A quantitative Khintchine-Groshev type theorem over a field of formal series

M.M. Dodson, S. Kristensen, J. Levesley

    Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

    7 Citationer (Scopus)

    Abstract

    An asymptotic formula which holds almost everywhere is obtained for the number of solutions to the Diophantine inequalities |qA-p|<\psi(|q|), where A is an n by m matrix (m>1) over the field of formal Laurent series with coefficients from a finite field, and p and q are vectors of polynomials over the same finite field.
    OriginalsprogEngelsk
    TidsskriftIndagationes Mathematicae
    Vol/bind16
    Nummer2
    Sider (fra-til)171-177
    Antal sider7
    ISSN0019-3577
    StatusUdgivet - 2005

    Fingeraftryk

    Dyk ned i forskningsemnerne om 'A quantitative Khintchine-Groshev type theorem over a field of formal series'. Sammen danner de et unikt fingeraftryk.

    Citationsformater