Du er her:
» A new separation algorithm for the Boolean quadric and cu...
A new separation algorithm for the Boolean quadric and cut polytopes
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
A separation algorithm is a procedure for generating cutting planes. Up to now, only a few polynomial-time separation algorithms were known for the Boolean quadric and cut polytopes. These polytopes arise in connection with zero–one quadratic programming and the max-cut problem, respectively. We present a new algorithm, which separates over a class of valid inequalities that includes all odd bicycle wheel inequalities and (2p+1,2)(2p+1,2)-circulant inequalities. It exploits, in a non-trivial way, three known results in the literature: one on the separation of View the MathML source{0,12}-cuts, one on the symmetries of the polytopes in question, and one on an affine mapping between the polytopes.
Originalsprog | Engelsk |
---|
Tidsskrift | Discrete Optimization |
---|
Vol/bind | 14 |
---|
Sider (fra-til) | 61-71 |
---|
Antal sider | 11 |
---|
ISSN | 1572-5286 |
---|
DOI | |
---|
Status | Udgivet - 2014 |
---|
Se relationer på Aarhus Universitet
Citationsformater
ID: 79450852