A model mimicking catabolic inflammatory disease; a controlled randomized study in humans

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

OBJECTIVE: Inflammatory disease is catabolic and associated with insulin resistance, increased energy expenditure, lipolysis and muscle protein loss. The main contributors to these metabolic adaptations are inflammation, malnutrition and immobilisation. Controlled experimental models incorporating these central elements of hospitalisation are lacking. The aim of this study was to validate such a human experimental model.

METHODS: In a randomized crossover design, six healthy young men underwent; (i) overnight fast (CTR), or (ii) exposure to systemic lipopolysaccharide (1 ng/kg) combined with 36-hour fast and bed rest (CAT). The difference in insulin sensitivity between CAT and CTR was the main outcome, determined by a hyperinsulinemic euglycemic glucose clamp. Palmitate, glucose, urea, phenylalanine and tyrosine tracers were infused to estimate metabolic shifts during interventions. Indirect calorimetry was used to estimate energy expenditure and substrate oxidation.

RESULTS: Insulin sensitivity was 41% lower in CAT than in CTR (M-value, mg/kg/min): 4.3 ± 0.2 vs 7.3 ± 1.3, p<0.05. The median (min max) palmitate flux (μmol/min) was higher during CAT than in CTR (257.0 (161.7 365.4) vs 131.6 (92.3 189.4), p = 0.004), and protein kinetics did not differ between interventions. C-reactive peptide (mg/L) was elevated in CAT compared with CTR (30.57 ± 4.08 vs 1.03 ± 0.19, p<0.001). Energy expenditure increased by 6% during CAT compared with CTR (1869 ± 94 vs 1756 ± 58, p = 0.04), CAT having higher lipid oxidation rates (p = 0.01) and lower glucose oxidation rates (p = 0.03). Lipopolysaccharide caused varying abdominal discomfort 2 hours post-injection, which had disappeared the following day.

CONCLUSION: We found that combined systemic inflammation, fasting and bed rest induced marked insulin resistance and increased energy expenditure and lipolysis, rendering this controlled experimental model suitable for anti-catabolic intervention studies, mimicking clinical conditions.

OriginalsprogEngelsk
Artikelnummere0241274
TidsskriftPLOS ONE
Vol/bind15
Nummer11
Antal sider15
ISSN1932-6203
DOI
StatusUdgivet - 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 200345645