A Model-Based Approach for Voltage and State-of- Charge Estimation of Lithium-ion Batteries

Milad Andalibi, Saeed Madani, Carlos Ziebert, Farshid Naseri, Mojtaba Hajihosseini

Publikation: Bidrag til bog/antologi/rapport/proceedingKonferencebidrag i proceedingsForskningpeer review

5 Citationer (Scopus)

Abstract

Electric vehicles are equipped with a large number of lithium-ion battery cells. To achieve superior performance and guarantee safety and longevity, there is a fundamental requirement for a Battery Management System (BMS). In the BMS, accurate prediction of the State-of-Charge (SOC) is a crucial task. The SOC information is needed for monitoring, controlling, and protecting the battery, e.g. to avoid hazardous over-charging or over-discharging. Nonetheless, the SOC is an internal cell variable and cannot be straightforwardly obtained. This paper presents a Kalman Filter (KF) approach based on an optimized second-order Rc equivalent circuit model to carefully account for model parameter changes. An effective machine learning technique based on Proximal Policy optimization (PPO) is applied to train the algorithm. The results confirm the high robustness of the proposed method to varying operating conditions.

OriginalsprogEngelsk
Titel2022 IEEE Sustainable Power and Energy Conference (iSPEC)
RedaktørerEhsan Pashajavid, Dowon Kim, Sumedha Rajakaruna, Ahmed Abu-Siada
ForlagIEEE
Publikationsdato2022
ISBN (Trykt)978-1-6654-8523-4
ISBN (Elektronisk)978-1-6654-8522-7
DOI
StatusUdgivet - 2022
BegivenhedIEEE Sustainable Power and Energy Conference (iSPEC) - Perth, Australien
Varighed: 4 dec. 20197 dec. 2022

Konference

KonferenceIEEE Sustainable Power and Energy Conference (iSPEC)
Land/OmrådeAustralien
ByPerth
Periode04/12/201907/12/2022

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Model-Based Approach for Voltage and State-of- Charge Estimation of Lithium-ion Batteries'. Sammen danner de et unikt fingeraftryk.

Citationsformater