Aarhus Universitets segl

A minimal representation of the orthosymplectic Lie supergroup

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Dokumenter

DOI

  • Sigiswald Barbier, Ghent University, Belgien
  • Jan Frahm
We construct a minimal representation of the orthosymplectic Lie supergroup $OSp(p,q|2n)$, generalising the Schr\"odinger model of the minimal representation of $O(p,q)$ to the super case. The underlying Lie algebra representation is realized on functions on the minimal orbit inside the Jordan superalgebra associated with $\mathfrak{osp}(p,q|2n)$, so that our construction is in line with the orbit philosophy. Its annihilator is given by a Joseph-like ideal for $\mathfrak{osp}(p,q|2n)$, and therefore the representation is a natural generalization of a minimal representations to the context of Lie superalgebras. We also calculate its Gelfand--Kirillov dimension and construct a non-degenerate sesquilinear form for which the representation is skew-symmetric and which is the analogue of an $L^2$-inner product in the supercase.
OriginalsprogEngelsk
TidsskriftInternational Mathematics Research Notices
Vol/bind2021
Nummer21
Sider (fra-til)16357-16420
Antal sider63
ISSN1073-7928
DOI
StatusUdgivet - nov. 2021

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 161612609