A Godement-Jacquet type integral and the metaplectic Shalika model

Jan Frahm, Eyal Kaplan

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

5 Citationer (Scopus)

Abstract

�We present a novel integral representation for a quotient of global automorphic L-functions, the symmetric square over the exterior square. The pole of this integral characterizes a period of a residual representation of an Eisenstein series. As such, the integral itself constitutes a period, of an arithmetic nature. The construction involves the study of local and global aspects of a new model for double covers of general linear groups, the metaplectic Shalika model. In particular, we prove uniqueness results over p-adic and archimedean fields, and a new Casselman–Shalika type formula.

OriginalsprogEngelsk
TidsskriftAmerican Journal of Mathematics
Vol/bind141
Nummer1
Sider (fra-til)219-282
Antal sider64
ISSN0002-9327
DOI
StatusUdgivet - 1 feb. 2019

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Godement-Jacquet type integral and the metaplectic Shalika model'. Sammen danner de et unikt fingeraftryk.

Citationsformater