Aarhus University Seal / Aarhus Universitets segl

A converse to linear independence criteria, valid almost everywhere

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

A converse to linear independence criteria, valid almost everywhere. / Fischler, S.; Hussain, M.; Kristensen, Simon; Levesley, J.

I: Ramanujan Journal, Bind 38, Nr. 3, 2015, s. 513-528.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

Fischler, S, Hussain, M, Kristensen, S & Levesley, J 2015, 'A converse to linear independence criteria, valid almost everywhere', Ramanujan Journal, bind 38, nr. 3, s. 513-528. https://doi.org/10.1007/s11139-014-9662-8

APA

Fischler, S., Hussain, M., Kristensen, S., & Levesley, J. (2015). A converse to linear independence criteria, valid almost everywhere. Ramanujan Journal, 38(3), 513-528. https://doi.org/10.1007/s11139-014-9662-8

CBE

MLA

Vancouver

Author

Fischler, S. ; Hussain, M. ; Kristensen, Simon ; Levesley, J. / A converse to linear independence criteria, valid almost everywhere. I: Ramanujan Journal. 2015 ; Bind 38, Nr. 3. s. 513-528.

Bibtex

@article{d51d9b8d8ee84eaa8f5d8ca39a8ab326,
title = "A converse to linear independence criteria, valid almost everywhere",
abstract = "We prove a weighted analogue of the Khintchine-Groshev theorem, where the distance to the nearest integer is replaced by the absolute value. This is applied to proving the optimality of several linear independence criteria over the field of rational numbers.",
keywords = "METRIC THEORY, ZETA-FUNCTION, ODD INTEGERS, APPROXIMATIONS, IRRATIONALITY, VALUES, FORMS",
author = "S. Fischler and M. Hussain and Simon Kristensen and J. Levesley",
year = "2015",
doi = "10.1007/s11139-014-9662-8",
language = "English",
volume = "38",
pages = "513--528",
journal = "Ramanujan Journal",
issn = "1382-4090",
publisher = "Springer New York LLC",
number = "3",

}

RIS

TY - JOUR

T1 - A converse to linear independence criteria, valid almost everywhere

AU - Fischler, S.

AU - Hussain, M.

AU - Kristensen, Simon

AU - Levesley, J.

PY - 2015

Y1 - 2015

N2 - We prove a weighted analogue of the Khintchine-Groshev theorem, where the distance to the nearest integer is replaced by the absolute value. This is applied to proving the optimality of several linear independence criteria over the field of rational numbers.

AB - We prove a weighted analogue of the Khintchine-Groshev theorem, where the distance to the nearest integer is replaced by the absolute value. This is applied to proving the optimality of several linear independence criteria over the field of rational numbers.

KW - METRIC THEORY

KW - ZETA-FUNCTION

KW - ODD INTEGERS

KW - APPROXIMATIONS

KW - IRRATIONALITY

KW - VALUES

KW - FORMS

U2 - 10.1007/s11139-014-9662-8

DO - 10.1007/s11139-014-9662-8

M3 - Journal article

VL - 38

SP - 513

EP - 528

JO - Ramanujan Journal

JF - Ramanujan Journal

SN - 1382-4090

IS - 3

ER -