A cloud detection algorithm for satellite imagery based on deep learning

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

Reliable detection of clouds is a critical pre-processing step in optical satellite based remote sensing. Currently, most methods are based on classifying invidual pixels from their spectral signatures, therefore they do not incorporate the spatial patterns. This often leads to misclassifications of highly reflective surfaces, such as human made structures or snow/ice. Multi-temporal methods can be used to alleviate this problem, but these methods introduce new problems, such as the need of a cloud-free image of the scene. In this paper, we introduce the Remote Sensing Network (RS-Net), a deep learning model for detection of clouds in optical satellite imagery, based on the U-net architecture. The model is trained and evaluated using the Landsat 8 Biome and SPARCS datasets, and it shows state-of-the-art performance, especially over biomes with hardly distinguishable scenery, such as clouds over snowy and icy regions. In particular, the performance of the model that uses only the RGB bands is significantly improved, showing promising results for cloud detection with smaller satellites with limited multi-spectral capabilities. Furthermore, we show how training the RS-Net models on data from an existing cloud masking method, which are treated as noisy data, leads to increased performance compared to the original method. This is validated by using the Fmask algorithm to annotate the Landsat 8 datasets, and then use these annotations as training data for regularized RS-Net models, which then show improved performance compared to the Fmask algorithm. Finally, the classification time of a full Landsat 8 product is 18.0 ± 2.4 s for the largest RS-Net model, thereby making it suitable for production environments.

OriginalsprogEngelsk
TidsskriftRemote Sensing of Environment
Vol/bind229
Sider (fra-til)247-259
Antal sider13
ISSN0034-4257
DOI
StatusUdgivet - aug. 2019

Se relationer på Aarhus Universitet Citationsformater

ID: 154599122