Aarhus University Seal / Aarhus Universitets segl

Trolle René Linderoth

Global and local expression of chirality in serine on the Cu{110} surface

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Tugce Eralp
  • ,
  • Andrey Shavorskiy
  • ,
  • Zhasmina V Zheleva
  • ,
  • Georg Held
  • ,
  • Nataliya Kalashnyk, Danmark
  • Yanxiao Ning, Danmark
  • Trolle René Linderoth
  • Institut for Fysik og Astronomi
  • Interdisciplinary Nanoscience Center
  • Interdisciplinær Nanoscience Forskerskole
Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic-inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of L- and D-enantiomers aggregate into superstructures with chiral (-1 ∓2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and β-OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.
Sider (fra-til)18841-18851
Antal sider11
StatusUdgivet - 21 dec. 2010

Se relationer på Aarhus Universitet Citationsformater

ID: 34510292