Aarhus University Seal / Aarhus Universitets segl

Steen Bønløkke Pedersen

Investigations of the endocannabinoid system in adipose tissue: effects of obesity/ weight loss and treatment options

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Investigations of the endocannabinoid system in adipose tissue : effects of obesity/ weight loss and treatment options. / Bennetzen, Marianne Faurholt; Pedersen, Steen Bønløkke.

I: Danish Medical Bulletin (Online), Bind 58, Nr. 4, 2011, s. B4269.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Bennetzen, Marianne Faurholt ; Pedersen, Steen Bønløkke. / Investigations of the endocannabinoid system in adipose tissue : effects of obesity/ weight loss and treatment options. I: Danish Medical Bulletin (Online). 2011 ; Bind 58, Nr. 4. s. B4269.

Bibtex

@article{1d8cbb68252640b5b83cad564a26d0c4,
title = "Investigations of the endocannabinoid system in adipose tissue: effects of obesity/ weight loss and treatment options",
abstract = "Obesity is a world wide epidemic; it is becoming more usual to be overweight or obese than to be normal weight. Obesity increases the risk of an extensive range of diseases such as cardiovascular disease, diabetes mellitus type 2, hypertension, depression and some types of cancer. Adipose tissue is more than a storage organ for surplus energy - it is also a setting for complex metabolic processes and adipose tissue releases substances that interact with other parts of the body to influence several systems including food intake and energy metabolism. The endocannabinoid system (ECS) is one of the signalling systems that control feeding behaviour. The ECS is implicated in many functions, such as pain, memory, addiction, inflammation, and feeding, and could be considered a stress recovery system. It also seems to integrate nutrient intake, metabolism and storage maintaining homeostatic balance. The ECS is a recently discovered system, and research indicates hyperactivity in obesity. The aim of this thesis is to elaborate on the relationships of this widespread system and its elements in adipose tissue in obesity. Study I is a 4 weeks rat intervention study to investigate whether weight independent effect of Rimonabant treatment exists. We found that food intake-tolerance development could be circumvented by cyclic administration of Rimonabant and implications of weight independent effects of treatment. Study II is a cross-sectional study to establish the expression of cannabinoid receptor 1 from various adipose tissue depots of lean and obese persons. In this study we conclude, that the subcutaneous adipose tissue express more CBR1 than the visceral depot in lean, but comparable levels in obese. Study III is a 10 weeks human intervention study to asses the effects on the ECS of 10% weight loss. We found reduction in the ECS in obesity that normalised with weight loss. Our results clearly show the presence of all the components of the ECS in human adipose tissue, and suggest that the ECS is reduced in adipose tissue in obesity. Our results do not support the hypothesis of hyperactivity of the ECS in human obesity. Possible future treatment of obesity with CBR1 antagonist could involve cyclic treatment of specific peripheral compounds.",
keywords = "Adiponectin, Adipose Tissue, Animals, Body Mass Index, Body Weight, C-Reactive Protein, Case-Control Studies, Endocannabinoids, Fatty Acids, Nonesterified, Female, Food Habits, Genetic Variation, Humans, Inflammation, Male, Obesity, Piperidines, Pyrazoles, Rats, Rats, Wistar, Reference Values, Risk Factors, Weight Loss",
author = "Bennetzen, {Marianne Faurholt} and Pedersen, {Steen B{\o}nl{\o}kke}",
year = "2011",
language = "English",
volume = "58",
pages = "B4269",
journal = "Danish Medical Journal",
issn = "2245-1919",
publisher = "Den Almindelige Danske L{\ae}geforening",
number = "4",

}

RIS

TY - JOUR

T1 - Investigations of the endocannabinoid system in adipose tissue

T2 - effects of obesity/ weight loss and treatment options

AU - Bennetzen, Marianne Faurholt

AU - Pedersen, Steen Bønløkke

PY - 2011

Y1 - 2011

N2 - Obesity is a world wide epidemic; it is becoming more usual to be overweight or obese than to be normal weight. Obesity increases the risk of an extensive range of diseases such as cardiovascular disease, diabetes mellitus type 2, hypertension, depression and some types of cancer. Adipose tissue is more than a storage organ for surplus energy - it is also a setting for complex metabolic processes and adipose tissue releases substances that interact with other parts of the body to influence several systems including food intake and energy metabolism. The endocannabinoid system (ECS) is one of the signalling systems that control feeding behaviour. The ECS is implicated in many functions, such as pain, memory, addiction, inflammation, and feeding, and could be considered a stress recovery system. It also seems to integrate nutrient intake, metabolism and storage maintaining homeostatic balance. The ECS is a recently discovered system, and research indicates hyperactivity in obesity. The aim of this thesis is to elaborate on the relationships of this widespread system and its elements in adipose tissue in obesity. Study I is a 4 weeks rat intervention study to investigate whether weight independent effect of Rimonabant treatment exists. We found that food intake-tolerance development could be circumvented by cyclic administration of Rimonabant and implications of weight independent effects of treatment. Study II is a cross-sectional study to establish the expression of cannabinoid receptor 1 from various adipose tissue depots of lean and obese persons. In this study we conclude, that the subcutaneous adipose tissue express more CBR1 than the visceral depot in lean, but comparable levels in obese. Study III is a 10 weeks human intervention study to asses the effects on the ECS of 10% weight loss. We found reduction in the ECS in obesity that normalised with weight loss. Our results clearly show the presence of all the components of the ECS in human adipose tissue, and suggest that the ECS is reduced in adipose tissue in obesity. Our results do not support the hypothesis of hyperactivity of the ECS in human obesity. Possible future treatment of obesity with CBR1 antagonist could involve cyclic treatment of specific peripheral compounds.

AB - Obesity is a world wide epidemic; it is becoming more usual to be overweight or obese than to be normal weight. Obesity increases the risk of an extensive range of diseases such as cardiovascular disease, diabetes mellitus type 2, hypertension, depression and some types of cancer. Adipose tissue is more than a storage organ for surplus energy - it is also a setting for complex metabolic processes and adipose tissue releases substances that interact with other parts of the body to influence several systems including food intake and energy metabolism. The endocannabinoid system (ECS) is one of the signalling systems that control feeding behaviour. The ECS is implicated in many functions, such as pain, memory, addiction, inflammation, and feeding, and could be considered a stress recovery system. It also seems to integrate nutrient intake, metabolism and storage maintaining homeostatic balance. The ECS is a recently discovered system, and research indicates hyperactivity in obesity. The aim of this thesis is to elaborate on the relationships of this widespread system and its elements in adipose tissue in obesity. Study I is a 4 weeks rat intervention study to investigate whether weight independent effect of Rimonabant treatment exists. We found that food intake-tolerance development could be circumvented by cyclic administration of Rimonabant and implications of weight independent effects of treatment. Study II is a cross-sectional study to establish the expression of cannabinoid receptor 1 from various adipose tissue depots of lean and obese persons. In this study we conclude, that the subcutaneous adipose tissue express more CBR1 than the visceral depot in lean, but comparable levels in obese. Study III is a 10 weeks human intervention study to asses the effects on the ECS of 10% weight loss. We found reduction in the ECS in obesity that normalised with weight loss. Our results clearly show the presence of all the components of the ECS in human adipose tissue, and suggest that the ECS is reduced in adipose tissue in obesity. Our results do not support the hypothesis of hyperactivity of the ECS in human obesity. Possible future treatment of obesity with CBR1 antagonist could involve cyclic treatment of specific peripheral compounds.

KW - Adiponectin

KW - Adipose Tissue

KW - Animals

KW - Body Mass Index

KW - Body Weight

KW - C-Reactive Protein

KW - Case-Control Studies

KW - Endocannabinoids

KW - Fatty Acids, Nonesterified

KW - Female

KW - Food Habits

KW - Genetic Variation

KW - Humans

KW - Inflammation

KW - Male

KW - Obesity

KW - Piperidines

KW - Pyrazoles

KW - Rats

KW - Rats, Wistar

KW - Reference Values

KW - Risk Factors

KW - Weight Loss

M3 - Journal article

C2 - 21466769

VL - 58

SP - B4269

JO - Danish Medical Journal

JF - Danish Medical Journal

SN - 2245-1919

IS - 4

ER -