Aarhus University Seal / Aarhus Universitets segl

Philip Hofmann

Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • J. M. Riley, Univ St Andrews, University of St Andrews, SUPA, Sch Phys & Astron, Ukendt
  • F. Mazzola, Norwegian Univ Sci & Technol NTNU, Norwegian University of Science & Technology, Dept Phys, Norge
  • M. Dendzik, Danmark
  • M. Michiardi, Danmark
  • T. Takayama, Univ Tokyo, University of Tokyo, Dept Phys, Ukendt
  • L. Bawden, Univ St Andrews, University of St Andrews, SUPA, Sch Phys & Astron, Ukendt
  • C. Granerod, Norwegian Univ Sci & Technol NTNU, Norwegian University of Science & Technology, Dept Phys, Ukendt
  • M. Leandersson, Lund University, Sverige
  • T. Balasubramanian, Lund University, Sverige
  • M. Hoesch, Diamond Light Source
  • ,
  • T. K. Kim, Diamond Light Source
  • ,
  • H. Takagi, Univ Tokyo, University of Tokyo, Dept Phys, Japan
  • W. Meevasana, Suranaree Univ Technol, Suranaree University of Technology, Sch Phys, Ukendt
  • Philip Hofmann
  • M. S. Bahramy, Univ Tokyo, University of Tokyo, Quantum Phase Elect Ctr, Japan
  • J. W. Wells, Department of Physics, Norwegian University of Science and Technology(NTNU), Trondheim, Danmark
  • P. D. C. King, Univ St Andrews, University of St Andrews, SUPA, Sch Phys & Astron
Methods to generate spin-polarized electronic states in nonmagnetic solids are strongly desired to enable all-electrical manipulation of electron spins for new quantum devices(1). This is generally accepted to require breaking global structural inversion symmetry(1-5). In contrast, here we report the observation from spin- and angle-resolved photoemission spectroscopy of spin-polarized bulk states in the centrosymmetric transition-metal dichalcogenide WSe2. Mediated by a lack of inversion symmetry in constituent structural units of the bulk crystal where the electronic states are localized(6), we show how spin splittings up to similar to 0.5 eV result, with a spin texture that is strongly modulated in both real and momentum space. Through this, our study provides direct experimental evidence for a putative locking of the spin with the layer and valley pseudospins in transition-metal dichalcogenides(7,8), of key importance for using these compounds in proposed valleytronic devices.
OriginalsprogEngelsk
TidsskriftNature Physics
Vol/bind10
Nummer11
Sider (fra-til)835-839
Antal sider5
ISSN1745-2473
DOI
StatusUdgivet - nov. 2014

Se relationer på Aarhus Universitet Citationsformater

ID: 84302269