Seniorforsker
Center for Kvantitativ Genetik og Genomforskning, Aarhus
C.F. Møllers Allé 3
bygning 1130, 206
8000 Aarhus C
Danmark
Fastnet: +4587157594
Mobil: +4524243598
Molecular prediction of disease and production traits in livestock
The overall research goal is to develop a statistical procedure that identifies which set of biological molecules (e.g., gene transcripts, proteins, and metabolites) best predicts phenotypes for disease and production traits in livestock. In developing this procedure the focus is on statistical methods that
1. account for relationships among biological molecules (e.g. Gaussian graphical modeling)
2. use prior information about the relationship among biological molecules.
We are working on a supervised stochastic search variable selection procedure for identifying promising subsets of molecular predictors of phenotypes in individuals. The procedure uses prior biological information and combines observations from large-scale ‘omics’ data. We have implemented this procedure into a fortran program which is currently being tested.
We are also looking into Gaussian graphical modeling, which is a multivariate statistical technique that can be used to infer relationships among molecular variables such as gene transcripts, proteins, and metabolites.
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avis › Tidsskriftartikel › Forskning › peer review
Projekter: Projekt › Forskning
Projekter: Projekt › Forskning
Projekter: Projekt › Forskning
Aktivitet: Deltagelse i eller arrangement af en begivenhed - typer › Deltagelse i eller organisering af workshop, seminar eller kursus
Aktivitet: Tale eller præsentation - typer › Foredrag og mundtlige bidrag
Aktivitet: Tale eller præsentation - typer › Foredrag og mundtlige bidrag
ID: 1712