Aarhus University Seal / Aarhus Universitets segl

Mogens Humlekrog Greve

Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Standard

Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression. / Peng, Yi; Knadel, Maria; Gislum, René; Schelde, Kirsten; Thomsen, Anton Gårde; Greve, Mogens Humlekrog.

I: Soil Science, Bind 179, Nr. 7, 2014, s. 325-332.

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Harvard

APA

CBE

MLA

Vancouver

Author

Bibtex

@article{6ac59907e525415994021cacded86138,
title = "Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression",
abstract = "A total of 125 soil samples were collected from a Danish field varying in soil texture from sandy to loamy. Visible near-infrared reflectance (Vis-NIR) and mid-infrared reflectance (MIR) spectroscopy combined with chemometric methods were used to predict soil organic carbon (SOC) and clay contents. The main objective of this study was to find the best model for predicting SOC and clay content in the sampled field using Vis-NIR, MIR, and the combination of Vis-NIR and MIR and using different model development techniques. The secondary objectives were (i) to use iterations of calculation to find the optimal number of replicates for MIR measurements based on the root mean square error of cross validation (RMSECV) and (ii) to apply partial least squares regression in combination with jackknifing (JK) to identify the most important part of spectral variables and the best model for predicting SOC and clay content. The study showed that with repeated MIR measurements it was possible to improve RMSECVby 20%. The optimal number of repeated MIR measurements was between 3 and 4 for SOC and clay content. Comparing all the prediction results, the combination of MIR and Vis-NIR with the partial least squares regression–JK technique resulted in the lowest prediction errors (RMSECVsoc of 0.35% and RMSECVclay of 1.05%). The average uncertainties of laboratory measurements were 0.39% and 1.86% for SOC and clay contents, respectively. All models had acceptable and—to a large extent—comparable margins of error. Partial least squares regression with JK simplified and enhanced the interpretation of the developed models because of a reduction in the number of variables used in the models",
keywords = "SOC, clay, spectroscopy, VIS-NIR-MIR, PLSR, jack-knifing",
author = "Yi Peng and Maria Knadel and Ren{\'e} Gislum and Kirsten Schelde and Thomsen, {Anton G{\aa}rde} and Greve, {Mogens Humlekrog}",
year = "2014",
doi = "10.1097/SS.0000000000000074",
language = "English",
volume = "179",
pages = "325--332",
journal = "Soil Science",
issn = "0038-075X",
publisher = "LIPPINCOTT WILLIAMS & WILKINS",
number = "7",

}

RIS

TY - JOUR

T1 - Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression

AU - Peng, Yi

AU - Knadel, Maria

AU - Gislum, René

AU - Schelde, Kirsten

AU - Thomsen, Anton Gårde

AU - Greve, Mogens Humlekrog

PY - 2014

Y1 - 2014

N2 - A total of 125 soil samples were collected from a Danish field varying in soil texture from sandy to loamy. Visible near-infrared reflectance (Vis-NIR) and mid-infrared reflectance (MIR) spectroscopy combined with chemometric methods were used to predict soil organic carbon (SOC) and clay contents. The main objective of this study was to find the best model for predicting SOC and clay content in the sampled field using Vis-NIR, MIR, and the combination of Vis-NIR and MIR and using different model development techniques. The secondary objectives were (i) to use iterations of calculation to find the optimal number of replicates for MIR measurements based on the root mean square error of cross validation (RMSECV) and (ii) to apply partial least squares regression in combination with jackknifing (JK) to identify the most important part of spectral variables and the best model for predicting SOC and clay content. The study showed that with repeated MIR measurements it was possible to improve RMSECVby 20%. The optimal number of repeated MIR measurements was between 3 and 4 for SOC and clay content. Comparing all the prediction results, the combination of MIR and Vis-NIR with the partial least squares regression–JK technique resulted in the lowest prediction errors (RMSECVsoc of 0.35% and RMSECVclay of 1.05%). The average uncertainties of laboratory measurements were 0.39% and 1.86% for SOC and clay contents, respectively. All models had acceptable and—to a large extent—comparable margins of error. Partial least squares regression with JK simplified and enhanced the interpretation of the developed models because of a reduction in the number of variables used in the models

AB - A total of 125 soil samples were collected from a Danish field varying in soil texture from sandy to loamy. Visible near-infrared reflectance (Vis-NIR) and mid-infrared reflectance (MIR) spectroscopy combined with chemometric methods were used to predict soil organic carbon (SOC) and clay contents. The main objective of this study was to find the best model for predicting SOC and clay content in the sampled field using Vis-NIR, MIR, and the combination of Vis-NIR and MIR and using different model development techniques. The secondary objectives were (i) to use iterations of calculation to find the optimal number of replicates for MIR measurements based on the root mean square error of cross validation (RMSECV) and (ii) to apply partial least squares regression in combination with jackknifing (JK) to identify the most important part of spectral variables and the best model for predicting SOC and clay content. The study showed that with repeated MIR measurements it was possible to improve RMSECVby 20%. The optimal number of repeated MIR measurements was between 3 and 4 for SOC and clay content. Comparing all the prediction results, the combination of MIR and Vis-NIR with the partial least squares regression–JK technique resulted in the lowest prediction errors (RMSECVsoc of 0.35% and RMSECVclay of 1.05%). The average uncertainties of laboratory measurements were 0.39% and 1.86% for SOC and clay contents, respectively. All models had acceptable and—to a large extent—comparable margins of error. Partial least squares regression with JK simplified and enhanced the interpretation of the developed models because of a reduction in the number of variables used in the models

KW - SOC

KW - clay

KW - spectroscopy

KW - VIS-NIR-MIR

KW - PLSR

KW - jack-knifing

U2 - 10.1097/SS.0000000000000074

DO - 10.1097/SS.0000000000000074

M3 - Journal article

VL - 179

SP - 325

EP - 332

JO - Soil Science

JF - Soil Science

SN - 0038-075X

IS - 7

ER -