Institut for Biomedicin

Mikael Esmann

Protonation-dependent inactivation of Na,K-ATPase by hydrostatic pressure developed at high-speed centrifugation

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Institut for Fysiologi og Biofysik
  • Anatomisk Institut
Irreversible inactivation of membranous Na,K-ATPase by high-speed centrifugation in dilute aqueous solutions depends markedly on the protonation state of the protein. Pig kidney Na,K-ATPase is irreversibly inactivated at pH 5 but is fully protected at pH 7 and above. Shark rectal gland Na,K-ATPase is irreversibly inactivated at neutral or acidic pH and partially protected at an alkaline pH. The overall Na,K-ATPase activity and the K-dependent pNPPase activity were denatured in parallel. Cryoprotectants such as glycerol or sucrose at concentrations of 25-30% fully protect both enzymes against inactivation. The specific ligands NaCl and KCl protect the Na,K-ATPase activity partially and the pNPPase activity fully at concentrations of 0.2-0.3 M. Electron microscope analysis of the centrifuged Na,K-ATPase membranes revealed that the ultrastructure of the native membranes is preserved upon inactivation. It was also observed that the sarcoplasmic reticulum Ca-ATPase and hog gastric H, K-ATPase are susceptible to inactivation by high-speed centrifugation in a pH-dependent fashion. H,K-ATPase is protected at alkaline pH, whereas Ca-ATPase is protected only in the neutral pH range.
TidsskriftBBA General Subjects
Sider (fra-til)320-328
Antal sider9
StatusUdgivet - 29 sep. 2000

Se relationer på Aarhus Universitet Citationsformater

ID: 36020645