Institut for Biomedicin

Mikael Esmann

Analysis of thiol-topography in Na,K-ATPase using labelling with different maleimide nitroxide derivatives

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Institut for Fysiologi og Biofysik
Spin-label EPR spectroscopy of shark rectal gland Na,K-ATPase modified at cysteine residues with a variety of maleimide-nitroxide derivatives is used to characterize the different classes of sulphydryl groups. The spin-labelled derivatives vary with respect to charge and lipophilicity, and the chemical reactivity towards modification and inactivation of the Na,K-ATPase is dependent on these properties. Ascorbate is used to reduce the spin-labels in situ, and the kinetics of reduction of the protein-bound spin-labels are found also to depend on the nature of the maleimide-nitroxide derivative. The Na,K-ATPase is labelled either at Class I groups (with retention of enzymatic activity) or at Class II groups (where the enzymatic activity is lost). Although Class I groups are labelled more readily than are Class II groups they are only slightly more susceptible to reduction by ascorbate than the Class II groups, indicating no major difference in environment. The spectral difference observed between immobilized and mobile spin-labels with both Class I and Class II groups labelling is not reflected in widely different reduction kinetics for these two spectral components. Solubilization of the enzyme in an active form does not change the protein structure in terms of increased accessibility of the SH-groups to reduction by ascorbate. The results are discussed in terms of the location of the different SH-groups and the origins of the differences in mobility evident in the EPR spectra of the spin-labelled SH-groups.
OriginalsprogEngelsk
TidsskriftBBA General Subjects
Vol/bind1112
Nummer2
Sider (fra-til)215-225
Antal sider11
ISSN0304-4165
StatusUdgivet - 9 dec. 1992

Se relationer på Aarhus Universitet Citationsformater

ID: 36021189