Aarhus University Seal / Aarhus Universitets segl

Marcel Mudrich

Collective autoionization in multiply-excited systems: A novel ionization process observed in Helium Nanodroplets

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

DOI

  • A. C. LaForge, Albert-Ludwigs-Universität Freiburg
  • ,
  • M. Drabbels, École Polytechnique Fédérale de Lausanne
  • ,
  • N. B. Brauer, École Polytechnique Fédérale de Lausanne
  • ,
  • M. Coreno, Consiglio Nazionale delle Ricerche
  • ,
  • M. Devetta, Universita degli Studi di Milano
  • ,
  • M. Di Fraia, Universita degli Studi di Trieste
  • ,
  • P. Finetti, Elettra-Sincrotrone Trieste S.C.p.A.
  • ,
  • Cesare Grazioli, Elettra-Sincrotrone Trieste S.C.p.A.
  • ,
  • R. Katzy, Albert-Ludwigs-Universität Freiburg
  • ,
  • Victor Lyamayev, Albert-Ludwigs-Universität Freiburg
  • ,
  • T. Mazza, European XFEL GmbH
  • ,
  • M. Mudrich
  • P. O'Keeffe, Consiglio Nazionale delle Ricerche
  • ,
  • Y. Ovcharenko, Technical University of Berlin
  • ,
  • P. Piseri, Universita degli Studi di Milano
  • ,
  • O. Plekan, Elettra-Sincrotrone Trieste S.C.p.A.
  • ,
  • Kevin C Prince, Elettra-Sincrotrone Trieste S.C.p.A.
  • ,
  • R. Richter, Elettra-Sincrotrone Trieste S.C.p.A.
  • ,
  • S. Stranges, Sapienza University of Rome
  • ,
  • C. Callegari, Elettra-Sincrotrone Trieste S.C.p.A.
  • ,
  • T. Möller, Technical University of Berlin
  • ,
  • F. Stienkemeier, Albert-Ludwigs-Universität Freiburg

Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields.

OriginalsprogEngelsk
Artikelnummer3621
TidsskriftScientific Reports
Vol/bind4
ISSN2045-2322
DOI
StatusUdgivet - 10 jan. 2014
Eksternt udgivetJa

Se relationer på Aarhus Universitet Citationsformater

ID: 112758079