Aarhus University Seal / Aarhus Universitets segl

Klaus Mølmer

Entangled Quantum Dynamics of Many-Body Systems using Bohmian Trajectories

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review



Bohmian mechanics is an interpretation of quantum mechanics that describes the motion of quantum particles with an ensemble of deterministic trajectories. Several attempts have been made to utilize Bohmian trajectories as a computational tool to simulate quantum systems consisting of many particles, a very demanding computational task. In this paper, we present a novel ab-initio approach to solve the many-body problem for bosonic systems by evolving a system of one-particle wavefunctions representing pilot waves that guide the Bohmian trajectories of the quantum particles. In this approach, quantum entanglement effects arise due to the interactions between different configurations of Bohmian particles evolving simultaneously. The method is used to study the breathing dynamics and ground state properties in a system of interacting bosons.
TidsskriftScientific Reports
Antal sider10
StatusUdgivet - 23 aug. 2018

Bibliografisk note

10 pages, 5 figures; Scientific Reports


  • quant-ph, cond-mat.quant-gas

Se relationer på Aarhus Universitet Citationsformater


Ingen data tilgængelig

ID: 131899779