Aarhus University Seal / Aarhus Universitets segl

Jill Miwa

Pnictogens allotropy and phase transformation during van der waals growth

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • Matthieu Fortin-Deschénes, Polytechnique Montreal
  • ,
  • Hannes Zschiesche, McMaster University
  • ,
  • Tevfik O. Menteş, Sincrotrone Trieste
  • ,
  • Andrea Locatelli, Sincrotrone Trieste
  • ,
  • Robert M. Jacobberger, University of Wisconsin-Madison
  • ,
  • Francesca Genuzio, Sincrotrone Trieste
  • ,
  • Maureen J. Lagos, McMaster University
  • ,
  • Deepnarayan Biswas
  • Chris Jozwiak, Lawrence Berkeley National Laboratory
  • ,
  • Jill A. Miwa
  • Soren Ulstrup
  • Aaron Bostwick, Lawrence Berkeley National Laboratory
  • ,
  • Eli Rotenberg, Lawrence Berkeley National Laboratory
  • ,
  • Michael S. Arnold, University of Wisconsin-Madison
  • ,
  • Gianluigi A. Botton, McMaster University
  • ,
  • Oussama Moutanabbir, Polytechnique Montreal

With their ns2 np3 valence electronic configuration, pnictogens are the only system to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light pnictogens crystallize in the A17 phase, and bulk heavier elements prefer the A7 phase. Herein, we demonstrate that the A17 of heavy pnictogens can be stabilized in antimonene grown on weakly interacting surfaces and that it undergoes a spontaneous thickness-driven transformation to the stable A7 phase. At a critical thickness of ∼4 nm, A17 antimony transforms from AB- to AA-stacked α-antimonene by a diffusionless shuffle transition followed by a gradual relaxation to the A7 phase. Furthermore, the competition between A7- and A17-like bonding affects the electronic structure of the intermediate phase. These results highlight the critical role of the atomic structure and substrate-layer interactions in shaping the stability and properties of layered materials, thus enabling a new degree of freedom to engineer their performance.

TidsskriftNano Letters
Sider (fra-til)8258–8266
Antal sider9
StatusUdgivet - nov. 2020

Se relationer på Aarhus Universitet Citationsformater

ID: 202384357