Aarhus University Seal / Aarhus Universitets segl

Jeffrey S. Hangst

Observation of the 1S-2P Lyman-alpha transition in antihydrogen

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

Dokumenter

DOI

  • M. Ahmadi, Univ Liverpool, University of Liverpool, Dept Phys
  • ,
  • B. X. R. Alves
  • ,
  • C. J. Baker, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • W. Bertsche, Sci Tech Daresbury, STFC Daresbury Laboratory, Cockcroft Inst
  • ,
  • A. Capra, TRIUMF, University of British Columbia
  • ,
  • C. Carruth, Univ Calif Berkeley, University of California Berkeley, University of California System, Dept Phys
  • ,
  • C. L. Cesar, Univ Fed Rio de Janeiro, Universidade Federal do Rio de Janeiro, Universidade do Estado do Rio de Janeiro, Inst Fis
  • ,
  • M. Charlton, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • S. Cohen, Ben Gurion Univ Negev, Ben Gurion University, Blaustein Inst Desert Res, Dept Environm Phys
  • ,
  • R. Collister, TRIUMF, University of British Columbia
  • ,
  • S. Eriksson, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • A. Evans, Univ Calgary, University of Calgary, Dept Phys & Astron
  • ,
  • N. Evetts, Univ British Columbia, University of British Columbia, Dept Phys & Astron
  • ,
  • J. Fajans, Univ Calif Berkeley, University of California Berkeley, University of California System, Dept Phys
  • ,
  • T. Friesen, Univ Calgary, University of Calgary, Dept Phys & Astron
  • ,
  • M. C. Fujiwara, TRIUMF, University of British Columbia
  • ,
  • D. R. Gill, TRIUMF, University of British Columbia
  • ,
  • J. S. Hangst
  • W. N. Hardy, Univ British Columbia, University of British Columbia, Dept Phys & Astron
  • ,
  • M. E. Hayden, Simon Fraser Univ, Simon Fraser University, Dept Phys
  • ,
  • E. D. Hunter, Univ Calif Berkeley, University of California Berkeley, University of California System, Dept Phys
  • ,
  • C. A. Isaac, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • M. A. Johnson, Univ Manchester, University of Manchester, Sch Phys & Astron, Sci Tech Daresbury, STFC Daresbury Laboratory, Cockcroft Inst
  • ,
  • J. M. Jones, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • S. A. Jones, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • S. Jonsell, Stockholm Univ, Stockholm University, Dept Phys
  • ,
  • A. Khramov, TRIUMF, University of British Columbia
  • ,
  • P. Knapp, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • L. Kurchaninov, TRIUMF, University of British Columbia
  • ,
  • N. Madsen, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • D. Maxwell, Univ Coll Swansea, Swansea University, Coll Sci, Dept Phys
  • ,
  • J. T. K. McKenna, TRIUMF, University of British Columbia
  • ,
  • S. Menary, York Univ, York University - Canada, Dept Phys & Astron
  • ,
  • J. M. Michan, Ecole Polytech Fed Lausanne, Ecole Polytechnique Federale de Lausanne, SPC
  • ,
  • T. Momose, Univ British Columbia, University of British Columbia, Dept Chem
  • ,
  • J. J. Munich
  • ,
  • K. Olchanski, TRIUMF, University of British Columbia
  • ,
  • A. Olin, Univ Victoria, University of Victoria, Dept Phys & Astron
  • ,
  • P. Pusa, Univ Liverpool, University of Liverpool, Dept Phys
  • ,
  • C. O. Rasmussen
  • ,
  • F. Robicheaux, Purdue Univ, Purdue University, Purdue University System, Dept Phys & Astron
  • ,
  • R. L. Sacramento, Univ Fed Rio de Janeiro, Universidade Federal do Rio de Janeiro, Universidade do Estado do Rio de Janeiro, Inst Fis
  • ,
  • M. Sameed, Univ Manchester, University of Manchester, Sch Phys & Astron
  • ,
  • E. Sarid, Soreq NRC
  • ,
  • D. M. Silveira, Univ Fed Rio de Janeiro, Universidade Federal do Rio de Janeiro, Universidade do Estado do Rio de Janeiro, Inst Fis
  • ,
  • D. M. Starko, York Univ, York University - Canada, Dept Phys & Astron
  • ,
  • G. Stutter
  • ,
  • C. So, Univ Calgary, University of Calgary, Dept Phys & Astron
  • ,
  • T. D. Tharp, Marquette Univ, Marquette University, Phys Dept
  • ,
  • R. I. Thompson, Univ Calgary, University of Calgary, Dept Phys & Astron
  • ,
  • D. P. van der Werf, Univ Paris Diderot, CEA, University of Paris Diderot - Paris VII, Universite Sorbonne Paris Cite-USPC (COMUE), Centre National de la Recherche Scientifique (CNRS), CEA DSM CNRS, Lab AIM, IRFU SAp,Ctr Saclay
  • ,
  • J. S. Wurtele, Univ Calif Berkeley, University of California Berkeley, University of California System, Dept Phys

In 1906, Theodore Lyman discovered his eponymous series of transitions in the extreme-ultraviolet region of the atomic hydrogen spectrum(1,2). The patterns in the hydrogen spectrum helped to establish the emerging theory of quantum mechanics, which we now know governs the world at the atomic scale. Since then, studies involving the Lyman-alpha line-the 1S-2P transition at a wavelength of 121.6 nanometres-have played an important part in physics and astronomy, as one of the most fundamental atomic transitions in the Universe. For example, this transition has long been used by astronomers studying the intergalactic medium and testing cosmological models via the so-called 'Lyman-alpha forest('3) of absorption lines at different redshifts. Here we report the observation of the Lyman-alpha transition in the antihydrogen atom, the antimatter counterpart of hydrogen. Using narrow-line-width, nanosecond-pulsed laser radiation, the 1S-2P transition was excited in magnetically trapped antihydrogen. The transition frequency at a field of 1.033 tesla was determined to be 2,466,051.7 +/- 0.12 gigahertz (1 sigma uncertainty) and agrees with the prediction for hydrogen to a precision of 5 x 10(-8). Comparisons of the properties of antihydrogen with those of its well-studied matter equivalent allow precision tests of fundamental symmetries between matter ;and antimatter. Alongside the ground-state hyperfine(4,5) and 1S-2S transitions(6,7) recently observed in antihydrogen, the Lyman-alpha transition will permit laser cooling of antihydrogen(8,9), thus providing a cold and dense sample of anti-atoms for precision spectroscopy and gravity measurements(10). In addition to the observation of this fundamental transition, this work represents both a decisive technological step towards laser cooling of antihydrogen, and the extension of antimatter spectroscopy to quantum states possessing orbital angular momentum.

OriginalsprogEngelsk
TidsskriftNature
Vol/bind561
Nummer7722
Sider (fra-til)211-+
Antal sider7
ISSN0028-0836
DOI
StatusUdgivet - 13 sep. 2018

Se relationer på Aarhus Universitet Citationsformater

Download-statistik

Ingen data tilgængelig

ID: 133274576