Aarhus University Seal / Aarhus Universitets segl

Jeffrey S. Hangst

Antihydrogen production and precision experiments

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikelForskningpeer review

  • M. H. Holzscheiter, Los Alamos National Laboratory
  • ,
  • G. Bendiscioli, Università Degli Studi di Pavia
  • ,
  • A. Bertin, Università di Bologna
  • ,
  • G. Bollen, CERN, European Organization for Nuclear Research (CERN)
  • ,
  • M. Bruschi, Università di Bologna
  • ,
  • C. Cesar, Escola Tecnica Federal do Ceara
  • ,
  • M. Charlton, UCL
  • ,
  • M. Corradini, University of Brescia
  • ,
  • D. DePedis, Sapienza University of Rome
  • ,
  • M. Doser, CERN, European Organization for Nuclear Research (CERN)
  • ,
  • J. Eades, CERN, European Organization for Nuclear Research (CERN)
  • ,
  • R. Fedele, University Federico II of Naples
  • ,
  • X. Feng, CERN, European Organization for Nuclear Research (CERN)
  • ,
  • F. Galluccio, University Federico II of Naples
  • ,
  • T. Goldman, Los Alamos National Laboratory
  • ,
  • J. S. Hangst
  • R. Hayano, University Tokyo
  • ,
  • D. Horváth, CERN, European Organization for Nuclear Research (CERN)
  • ,
  • R. J. Hughes, Los Alamos National Laboratory
  • ,
  • N. S.P. King, Los Alamos National Laboratory
  • ,
  • K. Kirsebom
  • ,
  • H. Knudsen
  • ,
  • V. Lagomarsino, Dipartimento di Pediatria, Università degli Studi di Genova, Genova, Italy.
  • ,
  • R. Landua, CERN, European Organization for Nuclear Research (CERN)
  • ,
  • G. Laricchia, UCL
  • ,
  • R. A. Lewis, 303 Osmond Laboratory, The Pennsylvania State University
  • ,
  • E. Lodi-Rizzini, University of Brescia
  • ,
  • M. Macri, Dipartimento di Pediatria, Università degli Studi di Genova, Genova, Italy.
  • ,
  • G. Manuzio, Dipartimento di Pediatria, Università degli Studi di Genova, Genova, Italy.
  • ,
  • U. Marconi, Università di Bologna
  • ,
  • M. R. Masullo, University Federico II of Naples
  • ,
  • J. P. Merrison
  • S. P. Møller
  • G. L. Morgan, Los Alamos National Laboratory
  • ,
  • M. M. Nieto, Los Alamos National Laboratory
  • ,
  • M. Piccinini, Università di Bologna
  • ,
  • R. Poggiani, University of Pisa
  • ,
  • A. Rotondi, Università Degli Studi di Pavia
  • ,
  • G. Rouleau, CERN, European Organization for Nuclear Research (CERN)
  • ,
  • P. Salvini, Università Degli Studi di Pavia
  • ,
  • N. Semprini-Cesari, Università di Bologna
  • ,
  • G. A. Smith, The Pennsylvania State University
  • ,
  • C. M. Surko, University of California, San Diego
  • ,
  • G. Testera, Los Alamos National Laboratory
  • ,
  • G. Torelli, University of Pisa
  • ,
  • E. Uggerhøj
  • ,
  • V. G. Vaccaro, University Federico II of Naples
  • ,
  • L. Venturelli, University of Brescia
  • ,
  • A. Vitale, Università di Bologna
  • ,
  • E. Widmann, CERN, European Organization for Nuclear Research (CERN)

The study of CPT invariance with the highest achievable precision in all particle sectors is of fundamental importance for physics. Equally important is the question of the gravitational acceleration of antimatter. In recent years, impressive progress has been achieved at the Low Energy Antiproton Ring (LEAR) at CERN in capturing antiprotons in specially designed Penning traps, in cooling them to energies of a few milli-electron volts, and in storing them for hours in a small volume of space. Positrons have been accumulated in large numbers in similar traps, and low energy positron or positronium beams have been generated. Finally, steady progress has been made in trapping and cooling neutral atoms. Thus the ingredients to form antihydrogen at rest are at hand. We propose to investigate the different methods to form antihydrogen at low energy, and to utilize the best of these methods to capture a number of antihydrogen atoms sufficient for spectroscopic studies in a magnetostatic trap. Once antihydrogen atoms have been captured at low energy, spectroscopic methods can be applied to interrogate their atomic structure with extremely high precision and compare it to its normal matter counterpart, the hydrogen atom. Especially the 1S-2S transition, with a lifetime of the excited state of 122 ms and thereby a natural linewidth of 5 parts in 10 16, offers in principle the possibility to directly compare matter and antimatter properties at a level of 1 part in 10 18. Additionally, comparison of the gravitational masses of hydrogen and antihydrogen, using either ballistic or spectroscopic methods, can provide direct experimental tests of the Weak Equivalence Principle for antimatter at a high precision.

OriginalsprogEngelsk
TidsskriftHyperfine Interactions
Vol/bind109
Nummer1-4
Sider (fra-til)1-32
Antal sider32
ISSN0304-3843
StatusUdgivet - 1 dec. 1997

Se relationer på Aarhus Universitet Citationsformater

ID: 136639439