Bolle Ravindra Babu, Syddansk Universitet, Danmark
Torben Højland, Syddansk Universitet, Danmark
Mikhail Abramov, KU Leuven, Belgien
Arthur Van Aerschot, KU Leuven, Belgien
Dalibor Odadzic, Goethe University Frankfurt, Tyskland
Romualdas Smicius, Goethe University Frankfurt, Tyskland
Jens Haas, Goethe University Frankfurt, Tyskland
Cordula Andree, Max Planck Institute of Molecular Cell Biology and Genetics, Tyskland
Jharna Barman, Uppsala University, Sverige
Malgorzata Wenska, Uppsala University, Sverige
Puneet Srivastava, Uppsala University, Sverige
Chuanzheng Zhou, Uppsala University, Sverige
Dmytro Honcharenko, Uppsala University, Sverige
Simone Hess, Department of Molecular Biology, Max Planck Institute for Infection Biology, Tyskland
Elke Müller, Department of Molecular Biology, Max Planck Institute for Infection Biology, Tyskland
Georgii V Bobkov, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Rusland
Sergey N Mikhailov, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Rusland
Eugenio Fava, Max Planck Institute of Molecular Cell Biology and Genetics, Tyskland
Thomas F Meyer, Department of Molecular Biology, Max Planck Institute for Infection Biology, BerlinDepartment of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Tyskland
Jyoti Chattopadhyaya, Uppsala University, Sverige
Marino Zerial, Max Planck Institute of Molecular Cell Biology and Genetics, Tyskland
Joachim W Engels, Goethe University Frankfurt, Tyskland
The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3'-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity.