Inference in partially identified models with many moment inequalities using Lasso

Federico A. Bugni, Mehmet Caner, Anders Bredahl Kock and Soumendra Lahiri

CREATES Research Paper 2016-12
Inference in partially identified models with many moment inequalities using Lasso

Federico A. Bugni∗ Mehmet Caner† Anders Bredahl Kock‡ Soumendra Lahiri§

April 26, 2016

Abstract

This paper considers the problem of inference in a partially identified moment (in)equality model with possibly many moment inequalities. Our contribution is to propose a novel two-step new inference method based on the combination of two ideas. On the one hand, our test statistic and critical values are based on those proposed by Chernozhukov et al. (2014c) (CCK14, hereafter). On the other hand, we propose a new first step selection procedure based on the Lasso. Some of the advantages of our two-step inference method are that (i) it can be used to conduct hypothesis tests and to construct confidence sets for the true parameter value that is uniformly valid, both in underlying parameter θ and distribution of the data; (ii) our test is asymptotically optimal in a minimax sense and (iii) our method has better power than CCK14 in large parts of the parameter space, both in theory and in simulations. Finally, we show that the Lasso-based first step can be implemented with a thresholding least squares procedure that makes it extremely simple to compute.

Keywords and phrases: Many moment inequalities, self-normalizing sum, multiplier bootstrap, empirical bootstrap, Lasso, inequality selection.

∗Department of Economics, Duke University, federico.bugni@duke.edu
†Department of Economics, Ohio State University, mcanerosu@gmail.com
‡Department of Economics and Business, Aarhus University, akock@econ.au.dk. Anders Bredahl Kock acknowledges support from CREATES - Center for Research in Econometric Analysis of Time Series (DNRF78), funded by the Danish National Research Foundation.
§Department of Statistics, North Carolina State University, snlahiri@ncsu.edu
1 Introduction

This paper contributes to the growing literature on inference in partially identified econometric models defined by many unconditional moment (in)equalities, i.e., inequalities and equalities. Consider an economic model with a parameter θ belonging to a parameter space Θ, whose main prediction is that the true value of θ, denoted by θ_0, satisfies a collection of moment (in)equalities. This model is partially identified, i.e., the restrictions of the model do not necessarily restrict θ_0 to a single value, but rather they constrain it to belong to a certain set, called the identified set. The literature on partially identified models discusses several examples of economic models that satisfy this structure, such as selection problems, missing data, or multiplicity of equilibria (see, e.g., Manski (1995) and Tamer (2003)).

The first contributions in the literature of partially identified moment (in)equalities focus on the case in which there is a fixed and finite number of moment (in)equalities, both unconditionally and conditionally. In practice, however, there are many relevant econometric models that produce a large set of moment conditions (even infinitely many). As several references in the literature point out (e.g. Menzel (2009, 2014)), the associated inference problems cannot be properly addressed by an asymptotic framework with a fixed number of moment (in)equalities. To address this issue, Chernozhukov et al. (2014c) (hereafter referred to as CCK14) obtain inference results in a partially identified model with many moment (in)equalities. According to this asymptotic framework, the number of moment (in)equalities, denoted by p, is allowed to be larger than the sample size n. In fact, the asymptotic framework allows p to be an increasing function of n and even to grow at certain exponential rates. Furthermore, CCK14 allow their moment (in)equalities to be “unstructured”, in the sense that they do not impose restrictions on the correlation structure of the sample moment conditions. For these reasons, CCK14 represents a significant advancement relative to previous literature on inference in moment (in)equalities.

This paper builds on the inference method proposed in CCK14. Their goal is to test whether a collection of p moment inequalities simultaneously holds or not. In order to implement their test they propose to

5 As pointed out by Chernozhukov et al. (2014c), this is true even for conditional moment (in)equality models (which typically produce an infinite number of unconditional moment (in)equalities). As they explain, the unconditional moment (in)equalities generated by conditional moment (in)equality models inherit the structure from the conditional moment conditions, which limits the underlying econometric model.

6 See also the related technical contributions in Chernozhukov et al. (2013b,a, 2014a,b).

7 This characteristic distinguished the proposed model from a standard conditional moment (in)equality model. While conditional moment conditions can generate an uncountable set of unconditional moment (in)equalities, their covariance structure is greatly restricted by the conditioning structure.
compare a test statistic based on the maximum of p Studentized statistics and propose several methods to compute the critical values. The construction of the critical values may include a first stage inequality selection procedure. This first stage selection has the objective of detecting moment inequalities that are slack, with the goal of increasing the power of the inference method. According to their simulation results, including a first stage can result in significant power gains.

Our contribution is to propose a new inference method based on the combination of two ideas. On the one hand, our test statistic and critical values are based on those proposed by CCK14. On the other hand, we propose a new first stage selection procedure based on the Lasso. The Lasso was first proposed in the seminal contribution by Tibshirani (1996) as a regularization technique in the linear regression model. Since then, this method has found wide use as a dimension reduction technique in large dimensional models with strong theoretical underpinnings.\footnote{For excellent reviews of this method see, e.g., Belloni and Chernozhukov (2011), Bühlmann and van de Geer (2011), Fan et al. (2011), and Hastie et al. (2015).} It is precisely these powerful shrinkage properties that serve as motivation to consider the Lasso as a procedure to separate out and select binding moment inequalities from the non-binding ones. Our Lasso first step inequality selection can be combined with any of the second step inference procedures proposed by CCK14: self-normalization, multiplier bootstrap, or empirical bootstrap.

The present paper considers the use of the Lasso to select moments in a partially identified inference moment (in)equality model. In the context of point identified problems, there is an existing literature that proposes the Lasso to address estimation and moment selection in GMM settings. In particular, Caner (2009) introduce Lasso type GMM-Bridge estimators to estimate structural parameters in a general model. The problem of selection of moment in GMM is studied in Liao (2013) and Cheng and Liao (2015). In addition, Caner and Zhang (2014) and Caner et al. (2016) find a method to estimate parameters in GMM with diverging number of moments/parameters, and selecting valid moments among many valid or invalid moments respectively. In addition, Fan et al. (2015) consider the problem of inference in high dimensional models with sparse alternatives. Finally, Caner and Fan (2015) propose a hybrid two-step estimation procedure based on Generalized Empirical Likelihood, where instruments are chosen in a first-stage using an adaptive Lasso procedure.

We obtain the following results for our two-step Lasso inference methods. First, we provide conditions under which our methods are uniformly valid, both in the underlying parameter θ and the distribution of the data. According to the literature in moment (in)equalities, obtaining uniformly valid asymptotic results is important to guarantee that the asymptotic analysis provides an accurate approximation to finite sample results.\footnote{In moment (in)equality models, the limiting distribution of the test statistic is discontinuous in the slackness of the moment} Second, by virtue of the results in CCK14, all of our proposed tests are asymptotically optimal in
a minimax sense. Third, we compare the power of our methods with the corresponding two-step methods proposed by CCK14, both in theory and in simulations. Since our two-step procedure and the corresponding one in CCK14 share the second step, our power comparison is a comparison of the Lasso first-step vis-a-vis the ones in CCK14. On the theory front, we obtain a region of underlying parameters under which the power of our method dominates that of CCK14. We also conduct extensive simulations to explore the practical consequences of our theoretical findings. Our simulations indicate that a Lasso-based first step is usually as powerful as the one in CCK14, and can sometimes be more powerful. In particular, our simulations reveal that the Lasso-based first step delivers more power in designs with sparse alternatives, i.e., when only few of the moment (in)equalities are violated. Fourth, we show that our Lasso-based first step can be implemented with a thresholding least squares procedure that makes it extremely simple to compute.

The remainder of the paper is organized as follows. Section 2 describes the inference problem and introduces our assumptions. Section 3 introduces the Lasso as a method to distinguish binding moment inequalities from non-binding ones and Section 4 considers inference methods that use the Lasso as a first step. Section 5 compares the power properties of inference methods based on the Lasso with the ones available in the literature. Section 6 provides evidence of the finite sample performance using Monte Carlo simulations and Section 7 presents some concluding remarks. Proofs of the main results and several intermediate results are reported in the Supplementary materials file (hereafter referred to as [SM]).

Throughout the paper, we use the following notation. For any set S, $|S|$ denotes its cardinality. For any vector $x \in \mathbb{R}^d$, $||x||_1 \equiv \sum_{i=1}^{d} |x_i|$.

2 The Setup

For each $\theta \in \Theta$, let $X(\theta) : \Omega \rightarrow \mathbb{R}^k$ be a k-dimensional random variable with distribution $P(\theta)$ and mean $\mu(\theta) \equiv E_{P(\theta)}[X(\theta)] \in \mathbb{R}^k$. For example, if Y is a d_1-dimensional random vector and $\Theta \subseteq \mathbb{R}^{d_2}$ and we consider the moment condition involving $\mu(\theta) = E\psi(Y, \theta)$ for some $\psi : \mathbb{R}^{d_1+d_2} \rightarrow \mathbb{R}^k$, then $X(\theta) = \psi(Y, \theta)$. Let $\mu_j(\theta)$ denote the jth component of $\mu(\theta)$ so that $\mu(\theta) = \{\mu_j(\theta)\}_{j \leq k}$. The main tenet of the econometric model is that the true parameter value θ_0 satisfies the following collection of p moment inequalities and $v = k - p$ inequalities, while its finite sample distribution does not exhibit such discontinuities. In consequence, asymptotic results obtained for any fixed distribution (i.e. pointwise asymptotics) can be grossly misleading, and possibly producing confidence sets that undercover (even asymptotically). See Imbens and Manski (2004), Andrews and Guggenberger (2009), Andrews and Soares (2010), and Andrews and Shi (2013) (Section 5.1).
moment equalities:
\[
\begin{align*}
\mu_j(\theta_0) &\leq 0 \text{ for } j = 1, \ldots, p, \\
\mu_j(\theta_0) &= 0 \text{ for } j = p + 1, \ldots, k.
\end{align*}
\]
(2.1)

As in CCK14, we are implicitly allowing the collection \(P\) of distributions of \(X(\theta)\) and the number of moment (in)equalities, \(k = p + v\) to depend on \(n\). In particular, we are primarily interested in the case in which \(p = p_n \to \infty\) and \(v = v_n \to \infty\) as \(n \to \infty\), but the subscripts will be omitted to keep the notation simple.

We allow the econometric model to be partially identified, i.e., the moment (in)equalities in Eq. (2.1) do not necessarily restrict \(\theta_0\) to a single value, but rather they constrain it to belong to the identified set, denoted by \(\Theta_I(P)\). By definition, the identified set is as follows:

\[
\Theta_I(P) \equiv \left\{ \theta \in \Theta : \begin{align*}
\mu_j(\theta) &\leq 0 \text{ for all } j = 1, \ldots, p, \\
\mu_j(\theta) &= 0 \text{ for all } j = p + 1, \ldots, k.
\end{align*} \right\}.
\]
(2.2)

Our goal is to test whether a particular parameter value \(\theta \in \Theta\) is a possible candidate for the true parameter value \(\theta_0 \in \Theta_I(P)\). In other words, we are interested in testing:

\[
H_0 : \theta_0 = \theta \text{ vs. } H_1 : \theta_0 \neq \theta.
\]
(2.3)

By definition, the identified set is composed of all parameters that are observationally equivalent to the true parameter value \(\theta_0\), i.e., every parameter value in \(\Theta_I(P)\) is a candidate for \(\theta_0\). In this sense, \(\theta = \theta_0\) is observationally equivalent to \(\theta \in \Theta_I(P)\) and so the hypothesis test in Eq. (2.3) can be equivalently reexpressed as:

\[
H_0 : \theta \in \Theta_I(P) \text{ vs. } H_1 : \theta \notin \Theta_I(P),
\]
(2.4)

i.e.,

\[
H_0 : \begin{align*}
\mu_j(\theta) &\leq 0 \text{ for all } j = 1, \ldots, p, \text{ and } \\
\mu_j(\theta) &= 0 \text{ for all } j = p + 1, \ldots, k.
\end{align*} \text{ vs. } H_1 : \text{“not } H_0\text{”}.
\]
(2.5)

In this paper, we propose a procedure to implement the hypothesis test in Eq. (2.5) with a given significance level \(\alpha \in (0, 1)\) based on a random sample of \(X(\theta) \sim P(\theta)\), denoted by \(X^n(\theta) = \{X_i(\theta)\}_{i \leq n}\). The inference procedure will reject the null hypothesis whenever a certain test statistic \(T_n(\theta)\) exceeds a
critical value $c_n(\alpha, \theta)$, i.e.,
\[
\phi_n(\alpha, \theta) \equiv 1[T_n(\theta) > c_n(\alpha, \theta)],
\]
where $1[:\cdot]$ denotes the indicator function. By the duality between hypothesis tests and confidence sets, a confidence set for θ_0 can be constructed by collecting all parameter values for which the inference procedure is not rejected, i.e.,
\[
C_n(1 - \alpha) \equiv \{\theta \in \Theta : T_n(\theta) \leq c_n(\alpha, \theta)\}.
\]

Our formal results will have the following structure. Let \mathcal{P} denote a set of probability distributions. We will show that for all $P \in \mathcal{P}$ and under H_0,
\[
P[T_n(\theta) > c_n(\alpha, \theta)] \leq \alpha + o(1).
\]

Moreover, the convergence in Eq. (2.8) will be shown to occur uniformly over both $P \in \mathcal{P}$ and $\theta \in \Theta$. This uniform size control result in Eq. (2.8) has important consequences regarding our inference problem. First, this result immediately implies that the hypothesis test procedure in Eq. (2.6) uniformly controls asymptotic size i.e., for $H_0 : \theta_0 = \theta$ and for all $\theta \in \Theta$,
\[
\limsup_{n \to \infty} \sup_{P \in \mathcal{P}} E[\phi_n(\alpha, \theta)] \leq \alpha.
\]

Second, the result also implies that the confidence set in Eq. (2.7) is asymptotically uniformly valid, i.e.,
\[
\liminf_{n \to \infty} \inf_{P \in \mathcal{P}} \inf_{\theta \in \Theta(\mathcal{P})} P[\theta \in C_n(1 - \alpha)] \geq 1 - \alpha.
\]

The rest of the section is organized as follows. Section 2.1 specifies the assumptions on the probability space \mathcal{P} that are required for our analysis. All the inference methods described in this paper share the same test statistic $T_n(\theta)$ and differ in the critical value $c_n(\alpha, \theta)$. The common test statistic is introduced and described in Section 2.2.

2.1 Assumptions

The collection of distributions $P \equiv \{P(\theta) : \theta \in \Theta\}$ are assumed to satisfy the following assumptions.

Assumption A.1. For every $\theta \in \Theta$, let $X^n(\theta) = \{X_i(\theta)\}_{i \leq n}$ be i.i.d. k-dimensional random vectors distributed according to $X(\theta) \sim P(\theta)$. Further, let $E_{P(\theta)}[X_{1j}(\theta)] \equiv \mu_j(\theta)$ and $Var_{P(\theta)}[X_{1j}(\theta)] \equiv \sigma_j^2(\theta) > 0$,
where $X_{ij}(\theta)$ denotes the j component of $X_i(\theta)$.

Assumption A.2. For some $\delta \in (0,1]$, $\max_{j=1,\ldots,k} \sup_{\theta \in \Theta} (E_{P(\theta)}[|X_{ij}(\theta)|^{2+\delta}])^{1/(2+\delta)} \equiv M_{n,2+\delta} < \infty$ and $M_{n,2+\delta}^2(\ln(2k-p))^{(2+\delta)/2n^{-\delta/2}} \to 0$.

Assumption A.3. For some $c \in (0,1)$, $(n^{-1-c}/2 \ln(2k-p) + n^{-3/2}(\ln(2k-p))^2)B_n^2 \to 0$ where $\sup_{\theta \in \Theta} (E_{P(\theta)}[\max_{j=1,\ldots,k} |Z_{ij}(\theta)|^4])^{1/4} \equiv B_n < \infty$ and $Z_{ij}(\theta) \equiv (X_{ij}(\theta) - \mu_j(\theta))/\sigma_j(\theta)$.

Assumption A.4. For some $c \in (0,1/2)$ and $C > 0$, $\max\{M_{n,3}^3, M_{n,4}^2, B_n\}^2 \ln((2k-p)n)^{7/2} \leq Cn^{1/2-c}$ where $M_{n,2+\delta}$ and B_n are as defined in Assumptions A.2-A.3.

We now briefly describe these assumptions. Assumption A.1 is standard in microeconometric applications. Assumption A.2 has two parts. The first part requires that $X_{ij}(\theta)$ has finite $(2+\delta)$-moments for all $j = 1,\ldots,k$. The second part limits the rate of growth of $M_{n,2+\delta}$ and the number of moment (in)equalities. Notice that $M_{n,2+\delta}$ is a function of the sample size because $\max_{j=1,\ldots,k} \sup_{\theta \in \Theta} (E_{P(\theta)}[|X_{ij}(\theta)|^{2+\delta}])^{1/(2+\delta)}$ is function of P and $k = v + p$, both of which could depend on n. Also, notice that $2k-p = 2v+p$, i.e., the total number of moment inequalities p plus twice the number of moment equalities v, all of which could depend on n. Assumption A.3 could be interpreted in a similar fashion as Assumption A.2, except that it refers to the standardized random variable $Z_{ij}(\theta) \equiv (X_{ij}(\theta) - \mu_j(\theta))/\sigma_j(\theta)$.

2.2 The test statistic

Given a random sample $X^n(\theta) = \{X_i(\theta)\}_{i=1}^n$, throughout the paper, we consider the following test statistic:

$$T_n(\theta) \equiv \max \left\{ \max_{j=1,\ldots,p} \frac{\sqrt{n} \hat{\mu}_j(\theta)}{\hat{\sigma}_j(\theta)}, \max_{s=p+1,\ldots,k} \frac{\sqrt{n} |\hat{\mu}_s(\theta)|}{\hat{\sigma}_s(\theta)} \right\}, \quad (2.11)$$

where, for $j = 1,\ldots,k$, $\hat{\mu}_j(\theta) \equiv \frac{1}{n} \sum_{i=1}^n X_{ij}(\theta)$ and $\hat{\sigma}_j^2(\theta) \equiv \frac{1}{n} \sum_{i=1}^n (X_{ij}(\theta) - \hat{\mu}_j(\theta))^2$. The statistic in Eq. (2.11) is not properly defined if $\hat{\sigma}_j^2(\theta) = 0$ for some $j = 1,\ldots,k$. In such cases, we use the convention that $0/0 \equiv 0$, $C/0 \equiv \infty$ if $C > 0$, and $C/0 \equiv -\infty$ if $C < 0$.

The test statistic is identical to that in CCK14 with the exception that we allow for the presence of moment equalities. By definition, large values of $T_n(\theta)$ are an indication that $H_0 : \theta = \theta_0$ is likely to be violated, leading to the hypothesis test in Eq. (2.6). The remainder of the paper considers several procedures to construct critical values that can be associated to this test statistic.

8It is relevant to point out that Assumptions A.1-A.4 are tailored for the construction of confidence sets in Eq. (2.7) in the sense that all the relevant constants are defined uniformly in $\theta \in \Theta$. If we were only interested in the hypothesis testing problem for a particular value of θ, then the previous assumptions could be replaced by their “pointwise” versions at the parameter value of interest.
3 Lasso as a first step moment selection procedure

In order to propose a critical value that can be associated to our test statistic $T_n(\theta)$, we need to approximate its distribution under the null hypothesis. According to the econometric model in Eq. (2.1), the true parameter satisfies p moment inequalities and v moment equalities. By definition, all moment equalities are always binding under the null hypothesis. On the other hand, the moment inequalities may or may not be binding, and a successful approximation of the asymptotic distribution depends on being able to distinguish binding moment inequalities from non-binding ones. Incorporating this information into the hypothesis testing problem is one of the key issues in the literature on inference in partially identified moment (in)equality models.

In their seminal contribution, CCK14 is the first paper in the literature to conduct inference in a partially identified model with many moment unstructured inequalities. Their paper proposes several procedures to select binding moment inequalities from non-binding based on three approximation methods: self-normalization (SN), multiplier bootstrap (MB), and empirical bootstrap (EB). Our contribution to this literature is to propose a novel approximation method based on the Lasso. By definition, the Lasso penalizes parameters values by their ℓ_1-norm, with the ability of producing parameter estimates that are exactly equal to zero. This powerful shrinkage property is precisely what motivates us to consider the Lasso as a first step moment selection procedure in a model with many moment (in)equalities. As we will soon show, the Lasso is an excellent method to detect binding moment inequalities from non-binding ones, and this information can be successfully incorporated into an inference procedure for many moment (in)equalities.

For every $\theta \in \Theta$, let $J(\theta)$ denote the true set of binding moment inequalities, i.e., $J(\theta) \equiv \{j = 1, \ldots, p : \mu_j(\theta) \geq 0\}$. Let $\mu_I(\theta) \equiv \{\mu_j(\theta)\}_{j=1}^p$ denote the moment vector associated to the moment inequalities and let $\hat{\mu}_I(\theta) \equiv \{\hat{\mu}_j(\theta)\}_{j=1}^p$ denote its sample analogue. In order to detect binding moment inequalities, we consider the weighted Lasso estimator of $\mu_I(\theta)$, given by:

$$
\hat{\mu}_L(\theta) \equiv \arg \min_{t \in \mathbb{R}^p} \left\{ \left(\hat{\mu}_I(\theta) - t \right)' \hat{W}(\theta) \left(\hat{\mu}_I(\theta) - t \right) + \lambda_n \left\| \hat{W}(\theta)^{1/2} t \right\|_1 \right\},
$$

where λ_n is a positive thresholding sequence that controls the amount of regularization and $\hat{W}(\theta)$ is a positive definite weighting matrix. To simplify the computation of the Lasso estimator, we impose the weighting matrix $\hat{W}(\theta) \equiv \text{diag}(1/\hat{\sigma}_j(\theta)^2)_{j=1}^p$ throughout this paper. As a consequence of this, Eq. (3.1) becomes:

$$
\hat{\mu}_L(\theta) = \left\{ \arg \min_{m \in \mathbb{R}} \left\{ (\hat{\mu}_j(\theta) - m)^2 + \lambda_n \hat{\sigma}_j(\theta) |m| \right\} \right\}_{j=1}^p.
$$
Notice that instead of using the Lasso in one p-dimensional model we instead use it in p one-dimensional models. As we shall see later, $\hat{\mu}_L(\theta)$ in Eq. (3.2) is closely linked to the soft-thresholded least squares estimator, which implies that its computation is straight-forward. The Lasso estimator $\hat{\mu}_L(\theta)$ implies a Lasso-based estimator of $J(\theta)$, given by:

$$\hat{J}_L(\theta) \equiv \{j = 1, \ldots, p : \hat{\mu}_{j,L}(\theta)/\hat{\sigma}_j(\theta) \geq -\lambda_n\}. \quad (3.3)$$

In order to implement this procedure, we need to choose the thresholding sequence λ_n, which determines the degree of regularization imposed by the Lasso. A higher (lower, respectively) value of λ_n will produce a larger (smaller) number of moment inequalities considered to be binding, resulting in a lower (higher) rejection rate. In consequence, this is a critical choice for our inference methodology. For any arbitrary $\varepsilon > 0$, a suitable choice of λ_n is given by (cf. [SM]):

$$\lambda_n = (4/3 + \varepsilon)n^{-1/2}\left(M_{n,2+\delta}n^{\delta/(2+\delta)} - n^{-1}\right)^{-1/2}. \quad (3.4)$$

According to Assumption A.2, Eq. (3.4) implies that $\lambda_n \to 0$. Notice that Eq. (3.4) is infeasible in practice as it depends on the unknown expression $M_{n,2+\delta}$. In practice, one can replace this unknown expression with its sample analogue: $\hat{M}_{n,2+\delta} = \max_{j=1,\ldots,k} \sup_{\theta \in \Theta} \left(n^{-1}\sum_{i=1}^n |X_{ij}(\theta)|^{2+\delta}\right)^{2/(2+\delta)}$.

As explained earlier, our Lasso procedure is used as a first step in order to detect binding moment inequalities from non-binding ones. The following result formally establishes that our Lasso procedure includes all binding ones with a probability that approaches one, uniformly.

Lemma 3.1. Assume Assumptions A.1-A.3, and let λ_n be as in Eq. (3.4). Then,

$$P[J(\theta) \subseteq \hat{J}_L(\theta)] \geq 1 - 2p\exp\left(-\frac{n^{\delta/(2+\delta)}}{2\hat{M}_{n,2+\delta}^2}\right)\left[1 + K\left(\frac{M_{n,2+\delta}}{n^{\delta/(2+2\delta)}} + 1\right)^{2+\delta}\right] + \tilde{K}n^{-\varepsilon} \geq 1 + o(1),$$

where K, \tilde{K} are universal constants and the convergence in the last line is uniform in all parameters $\theta \in \Theta$ and distributions P that satisfy the assumptions in the statement.

Thus far, our Lasso estimator of the binding constrains in Eq. (3.3) has been defined in terms of the solution of the p-dimensional minimization problem in Eq. (3.2). We conclude the subsection by providing an equivalent closed form solution for this set.
Lemma 3.2. The estimated set $\hat{J}_L(\theta)$ in Eq. (3.3) can be equivalently computed as follows:

$$\hat{J}_L(\theta) = \{j = 1, \ldots, p : \hat{\mu}_j(\theta)/\hat{\sigma}_j(\theta) \geq -3\lambda_n/2\}. \quad (3.5)$$

Lemma 3.2 is a very important computational aspect of our methodology. This result reveals that the set $\hat{J}_L(\theta)$ can be computed by comparing standardized sample averages of the data with a modified threshold of $-3\lambda_n/2$. In other words, our Lasso first stage can be implemented at no additional computational cost, i.e., there is no need to solve the p-dimensional minimization problem described in Eq. (3.2).

4 Inference methods with Lasso first step

In the remainder of the paper, we show how to conduct inference in our partially identified many moment (in)equality model by combining the Lasso first step developed in Section 3 with a second step based on the inference methods proposed by CCK14. In particular, Section 4.1 combines our Lasso first step with their self-normalization approximation, while Section 4.2 combines our Lasso first step with their bootstrap approximations.

4.1 Self-normalization approximation

Before describing our self-normalization (SN) approximation with Lasso first stage, we first describe the “plain vanilla” SN approximation with no first stage selection. Our description slightly extends the SN method proposed by CCK14 to the presence of moment equalities. To that end, we first define $c_n^{SN}(\alpha, |J|)$, the SN approximation to the critical value in a hypothetical moment (in)equality model composed of $|J|$ moment inequalities and $k - p$ moment equalities, and a significance level of $\alpha \in (0, 0.5]$:

$$c_n^{SN}(\alpha, |J|) \equiv \begin{cases} 0 & \text{if } 2(k - p) + |J| = 0, \\ \frac{\Phi^{-1}(1-\alpha/(2(k-p)+|J|))}{\sqrt{1-\left(\Phi^{-1}(1-\alpha/(2(k-p)+|J|))\right)^2/n}} & \text{if } 2(k - p) + |J| > 0. \end{cases} \quad (4.1)$$

Lemma A.5 in [SM] shows that $c_n^{SN}(\alpha, |J|)$ provides asymptotic uniform size control in a hypothetical moment (in)equality model with $|J|$ moment inequalities and $k - p$ moment equalities under Assumptions A.1-A.2. The main difference between this result and CCK14 (Theorem 4.1) is that we allow for the presence of moment equalities. Since our moment (in)equality model has $|J| = p$ moment inequalities and $k - p$ moment equalities, we can define the regular (i.e. one-step) SN approximation method by using $|J| = p$ in Eq. (4.1).
The following result is a corollary of Lemma A.5.

Theorem 4.1 (1-step SN approximation). Let Assumptions A.1-A.2 and H_0 hold. Let

$$c_{n,SN}^{1S}(\alpha) \equiv c_n^{SN}(\alpha, p) = \frac{\Phi^{-1}(1 - \alpha/(2k - p))}{\sqrt{1 - \left(\Phi^{-1}(1 - \alpha/(2k - p))\right)^2/n}}. \quad (4.2)$$

Then,

$$P[T_n(\theta) > c_{n,SN}^{1S}(\alpha)] \leq \alpha + \alpha K n^{-\delta/2} M_{n,2+\delta}^{2+\delta} \left(1 + \Phi^{-1}(1 - \alpha/(2k - p))\right)^{2+\delta} = o(1),$$

where K is a universal constant and the convergence in the last line is uniform in all parameters $\theta \in \Theta$ and distributions P that satisfy the assumptions in the statement.

By definition, the regular SN approximation considers all moment inequalities in the model as binding. A more powerful test can be constructed by using the data to reveal which moment inequalities are slack. In particular, CCK14 propose a two-step SN procedure which combines a first step moment inequality based on SN methods and the second step SN critical value in Theorem 4.1. If we adapt their methods to the presence of moment equalities, this would be given by, with equation (4.1) in mind,

$$c_{n,SN}^{2S}(\theta, \alpha) \equiv c_n^{SN}(\alpha - 2\beta_n, |\hat{J}_{SN}(\theta)|), \quad \hat{J}_{SN}(\theta) \equiv \left\{ j \in \{1, \ldots, p\} : \sqrt{n} \mu_j(\theta)/\hat{\sigma}_j(\theta) > -2c_{n,SN}^{1S}(\beta_n) \right\}. \quad (4.3)$$

where $\{\beta_n\}_{n \geq 1}$ is an arbitrary sequence of constants in $(0, \alpha/3)$. Notice that if $p = k$ (i.e. no moment equalities), then this critical value corresponds exactly to the two-step SN critical value in CCK14. By slightly extending their arguments, one can show that inference based on the critical value $c_{n,SN}^{2S}(\theta, \alpha)$ in Eq. (4.3) is asymptotically valid in a uniform sense.

In this paper, we propose an alternative SN procedure by using our Lasso-based first step. In particular, we define the following two-step Lasso SN critical value, with equation (4.1) in mind,

$$c_{n,SN,L}^{2S}(\theta, \alpha) \equiv c_n^{SN}(\alpha, |\hat{J}_L(\theta)|), \quad (4.5)$$

where $\hat{J}_L(\theta)$ is as in Eq. (3.5). The following result shows that an inference method based on our two-step Lasso SN critical value is asymptotically valid in a uniform sense.

Theorem 4.2 (Two-step Lasso SN approximation). Assume Assumptions A.1-A.3, that H_0 holds, and let
\[\lambda_n \text{ be as in Eq. (3.4). Then,} \]

\[P \left[T_n(\theta) > c_n^{SN,L}(\theta, \alpha) \right] \]

\[\leq \alpha + \left\{ \alpha Kn^{-\delta/2}M_{2,2+\delta}^2 + 4p \exp \left(-2^{-1}n^{\delta/(2+\delta)} / M_{2,2+\delta}^2 \right) \left[1 + K \left(M_{n,2+\delta} / n^{\delta/(2+\delta)} \right) + 1 \right]^{2+\delta} + 2K n^{-\delta} \right\} \]

\[= \alpha + o(1), \]

where \(K \) and \(\hat{K} \) are universal constants and the convergence in the last line is uniform in all parameters \(\theta \in \Theta \) and distributions \(P \) that satisfy the assumptions in the statement.

We now compare our two-step SN Lasso method with the SN methods considered in CCK14. Since all inference methods share the test statistic, the only difference lies in the critical values. While the one-step SN critical values considers all \(p \) moment inequalities as binding, our two-step SN Lasso critical value considers only \(J_L(\theta) \) moment inequalities as binding. Since \(|\hat{J}_L(\theta)| \leq p \) and \(c_n^{SN}(\alpha, |J|) \) is weakly increasing in \(|J| \) (see Lemma A.4 in [SM]), then our two-step SN method results in a larger rejection probability for all sample sizes. In contrast, the comparison between \(c_n^{SN,L}(\theta, \alpha) \) and \(c_n^{SN,2S}(\theta, \alpha) \) is not straightforward as these differ in two aspects. First, the set of binding constrains \(J_{SN}(\theta) \) in Eq. (4.4) used by the two-step SN method differs from the set of binding constrains \(J_L(\theta) \) according to the Lasso. Second, the quantile of the critical values are different: the two-step SN method in Eq. (4.3) considers the \(\alpha - 2\beta_n \) quantile while the Lasso-based one considers the usual \(\alpha \) quantile. As a result of these differences, the comparison of these critical values is ambiguous and so is the power of these two tests. The relative power comparison between these two-step SN methods will be discussed in further detail in Section 5.

4.2 Bootstrap methods

In addition to the SN approximation method, CCK14 also propose two bootstrap approximation methods: multiplier bootstrap (MB) and empirical bootstrap (EB). Relative to the SN approximation, the bootstrap methods have the advantage of taking into account the dependence between the coordinates of \(\{ \sqrt{n} \hat{\mu}_j(\theta) / \hat{\sigma}_j(\theta) \}_j \) involved in the definition of the test statistic \(T_n(\theta) \).

As in the previous subsection, we first define the bootstrap approximation to the critical value in a hypothetical moment (in)equality model composed of moment inequalities indexed by the set \(J \) and the \(k - p \) moment equalities. The critical values for MB and EB are denoted by \(c_n^{MB}(\theta, J, \alpha) \) and \(c_n^{EB}(\theta, J, \alpha) \), respectively, for the parameter \(\theta \in \Theta \) and significance level of \(\alpha \in (0, 0.5] \). These are computed according to
the following algorithms:

Algorithm 4.1. Multiplier bootstrap (MB)

1. Generate i.i.d. standard normal random variables \(\{ \epsilon_i \}_{i=1}^n \), and independent of the data \(X^n(\theta) \).

2. Construct the multiplier bootstrap test statistic:

\[
W_{MB}^n(\theta, J) = \max \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^n \epsilon_i (X_{ij}(\theta) - \hat{\mu}_j(\theta)) \frac{1}{\hat{\sigma}_j(\theta)}, \max_{s=p+1, \ldots, k} \frac{1}{\sqrt{n}} \left| \sum_{i=1}^n \epsilon_i (X_{is}(\theta) - \hat{\mu}_s(\theta)) \right| \hat{\sigma}_s(\theta) \right\}
\]

3. Calculate \(c_{MB}^n(\theta, J, \alpha) \) as the conditional \((1 - \alpha)\)-quantile of \(W_{MB}^n(\theta, J) \) (given \(X^n(\theta) \)).

Algorithm 4.2. Empirical bootstrap (EB)

1. Generate a bootstrap sample \(\{ X^*_i(\theta) \}_{i=1}^n \) from the data, i.e., an i.i.d. draw from the empirical distribution of \(X^n(\theta) \).

2. Construct the empirical bootstrap test statistic:

\[
W_{EB}^n(\theta, J) = \max \left\{ \frac{1}{\sqrt{n}} \sum_{i=1}^n (X^*_{ij}(\theta) - \hat{\mu}_j(\theta)) \frac{1}{\hat{\sigma}_j(\theta)}, \max_{s=p+1, \ldots, k} \frac{1}{\sqrt{n}} \left| \sum_{i=1}^n (X^*_{is}(\theta) - \hat{\mu}_s(\theta)) \right| \hat{\sigma}_s(\theta) \right\}
\]

3. Calculate \(c_{EB}^n(\theta, J, \alpha) \) as the conditional \((1 - \alpha)\)-quantile of \(W_{EB}^n(\theta, J) \) (given \(X^n(\theta) \)).

All the results in the remainder of the section will apply to both versions of the bootstrap, and under the same assumptions. For this reason, we can use \(c_B^n(\theta, J, \alpha) \) to denote the bootstrap critical value where \(B \in \{ MB, EB \} \) represents either MB or EB. Lemma A.6 in [SM] shows that \(c_B^n(\theta, J, \alpha) \) for \(B \in \{ MB, EB \} \) provides asymptotic uniform size control in a hypothetical moment (in)equality model composed of moment inequalities indexed by the set \(J \) and the \(k - p \) moment equalities under Assumptions A.1 and A.4. The main difference between this result and CCK14 is the presence of the moment equalities. Since our moment (in)equality model has \(|J| = p\) moment inequalities and \(k - p \) moment equalities, we can define the regular (i.e. one-step) MB or EB approximation method by using \(|J| = p\) in Algorithm 4.1 or 4.2, respectively. The following result is a corollary of Lemma A.6.

Theorem 4.3. Assume Assumptions A.1, A.4, and that \(H_0 \) holds. For \(B \in \{ MB, EB \} \), set \(c_{n,1S}^B(\theta, \alpha) \equiv c_B^n(\theta, \{1, \ldots, p\}, \alpha) \) where \(c_B^n(\theta, J, \alpha) \) is as in Algorithm 4.1 if \(B = MB \) or Algorithm 4.2 if \(B = EB \). Then,

\[
P[T_n(\theta) > c_{n,1S}^B(\theta, \alpha)] \leq \alpha + \tilde{C}_n^{-\epsilon},
\]

13
where $\tilde{c}, \tilde{C} > 0$ are positive constants that only depend on the constants c, C in Assumption A.4. Furthermore, if $\mu_j(\theta) = 0$ for all $j = 1, \ldots, p$, then $|P[T_n(\theta) > c_n^{B,1S}(\theta, \alpha)] - \alpha| \leq \tilde{C}n^{-\frac{\varepsilon}{2}}$. Finally, the proposed bounds are uniform in all parameters $\theta \in \Theta$ and distributions P that satisfy the assumptions in the statement.

Just like in the SN approximation method, the regular (one-step) bootstrap approximation considers all moment inequalities in the model as binding. A more powerful bootstrap-based test can be constructed using the data to reveal which moment inequalities are slack. However, unlike in the SN approximation method, Theorem 4.3 shows that the size of the test using the bootstrap critical values converges to α when all the moment inequalities are binding. This difference comes from the fact that the bootstrap can better approximate the correlation structure in the moment inequalities, which is not taken into account by the SN approximation. As we will see in simulations, this will translate into power gains in favor of the bootstrap.

CCK14 propose a two-step bootstrap procedure, combining a first step moment inequality based on the bootstrap with the second step bootstrap critical value in Theorem 4.3. If we adapt their methods to the presence of moment equalities, this would be given by:

$$
c^{B,2S}(\theta, \alpha) \equiv c_n^B(\theta, \hat{J}_B(\theta), \alpha - 2\beta_n) \quad \text{with} \quad \hat{J}_B(\theta) \equiv \{ j \in \{1, \ldots, p\} : \sqrt{n}\hat{\mu}_j(\theta)/\hat{\sigma}_j(\theta) > -2c_n^{B,1S}(\alpha, \beta_n) \},
$$

where $\{\beta_n\}_{n \geq 1}$ is an arbitrary sequence of constants in $(0, \alpha/2)$. Again, by slightly extending their formal arguments, one can show that an inference method based on the critical value $c^{B,2S}(\theta, \alpha)$ in Eq. (4.6) is asymptotically valid in a uniform sense.

This paper proposes an alternative bootstrap procedure by using our Lasso-based first step. For $B \in \{MB, EB\}$, define the following two-step Lasso bootstrap critical value

$$
c_n^{B,L}(\theta, \alpha) \equiv \hat{J}_L(\theta, \alpha),
$$

where $\hat{J}_L(\theta)$ is as in Eq. (3.5), and where $c_n^B(\theta, J, \alpha)$ is as in Algorithm 4.1 if $B = MB$ or Algorithm 4.2 if $B = EB$. The following result shows that an inference method based on our two-step Lasso bootstrap critical value is asymptotically valid in a uniform sense.

Theorem 4.4 (Two-step Lasso bootstrap approximation). Let Assumptions A.1, A.2, A.3, A.4, and H_0
hold, and let λ_n be as in Eq. (3.4). Then, for $B \in \{MB, EB\}$,

$$P[T_n(\theta) > c_n^{B,L}(\theta, \alpha)]$$

$$\leq \alpha + \left(\tilde{C}_n^{-\tilde{c}} + Cn^{-c} + 2\tilde{K}n^{-c} + 4p\exp(2^{-1}n^{\delta/(2+\delta)}/M_n^{2(2+\delta)}) \left[1 + K(M_n,2+\delta/n^{\delta/(2(2+\delta))} + 1)^{2+\delta}\right]\right)$$

$$= \alpha + o(1),$$

where $\tilde{c}, \tilde{C} > 0$ are positive constants that only depend on the constants c, C in Assumption A.4, K, \tilde{K} are universal constants, and the convergence is uniform in all parameters $\theta \in \Theta$ and distributions P that satisfy the assumptions in the statement. Furthermore, if $\mu_j = 0$ for all $1 \leq j \leq p$ and that

$$2p\exp(2^{-1}n^{\delta/(2+\delta)}/M_n^{2(2+\delta)}) \left[1 + K(M_n,2+\delta/n^{\delta/(2(2+\delta))} + 1)^{2+\delta} + \tilde{K}n^{-c} \leq \tilde{C}_n^{-\tilde{c}}, \right.$$ (4.9)

then,

$$|P[T_n(\theta) > c_n^{B,L}(\theta, \alpha)] - \alpha| \leq 3\tilde{C}_n^{-\tilde{c}} + Cn^{-c} = o(1),$$

where all constants are as defined earlier and the convergence is uniform in all parameters $\theta \in \Theta$ and distributions P that satisfy the assumptions in the statement.

By using the same arguments as for the SN methods, we can compare our two-step bootstrap Lasso method with the bootstrap methods considered in CCK14. First, our two-step bootstrap method results in a larger rejection probability than the one-step bootstrap method for all sample sizes. Second, the comparison between $c_n^{B,L}(\theta, \alpha)$ and $c_n^{B,2S}(\theta, \alpha)$ is not straightforward as these differ in the same two aspects as before. This comparison will be the main focus of Section 5.

5 Power comparison

The results in CCK14 indicate that all of their inference methods satisfy uniform asymptotic size control under appropriate assumptions. Similarly, Theorems 4.2 and 4.4 show that our Lasso-based two-step inference methods also satisfy uniform asymptotic size control under similar assumptions. Given these results, the natural next step is to compare these inference methods in terms of criteria related to power.

One possible criterion for comparison related to power is minimax optimality, i.e., the ability that a test has of rejecting departures from the null hypothesis at the fastest possible rate that could be detected. In particular, results in CCK14 indicate that all their proposed inference methods are asymptotically optimal in a minimax sense, even in the absence of any inequality selection (i.e. defined as in Theorems 4.1 and 4.3
in our moment (in)equality model). Since our Lasso-based inequality selection can only reduce the number of moment inequalities and since critical values are weakly decreasing in these10, we can also conclude that all of our two-step Lasso-based inference methods (SN, MB, and EB) are also asymptotically optimal in a minimax sense. In other words, minimax optimality is a desirable property that is satisfied by all tests under consideration and, thus, cannot be used as a criterion to compare among inference methods.

Thus, we proceed to compare our Lasso-based inference procedures with those proposed by CCK14 in terms of rejection rates. Since all inference methods share the test statistic $T_n(\theta)$, the power comparison can be established by comparing the methods in terms of critical values, i.e., the power increases as we decrease the critical value.

5.1 Comparison with one-step methods

As already pointed out in previous sections, our Lasso-based two-step inference methods will always be more powerful than the corresponding one-step analogue, i.e.,

\[
P[T_n(\theta) > c_n^{SN,L}(\theta, \alpha)] \geq P[T_n(\theta) > c_n^{SN,1S}(\alpha)]
\]

\[
P[T_n(\theta) > c_n^{B,L}(\theta, \alpha)] \geq P[T_n(\theta) > c_n^{B,1S}(\theta, \alpha)] \quad \forall B \in \{MB, EB\},
\]

for all $\theta \in \Theta$ and $n \in \mathbb{N}$. This is a direct consequence of the fact that one-step critical values are based on considering all moment inequalities as binding, while the Lasso-based first-step will restrict attention to the subset of these moment inequalities that are sufficiently close to binding, i.e., $\hat{J}_L(\theta) \subseteq \{1, \ldots, p\}$.

5.2 Comparison with two-step methods

The comparison between our two-step Lasso procedure and the two-step methods proposed by CCK14 are not straightforward for two reasons. First, the set of binding constrains according to the Lasso is different from the ones considered by other two-step methods. Second, the quantile of the critical values are different: our Lasso-based methods considers the usual α quantile while the other two-step methods consider the $\alpha - 2\beta_n$ quantile for a sequence of positive constants $\{\beta_n\}_{n \geq 1}$.

To simplify the remainder of the discussion, we focus exclusively on the case when the moment (in)equality model is only composed of moment inequalities, i.e., $k = p$, which is precisely the setup in CCK14. Furthermore, the introduction of moment equalities would not qualitatively change any of the conclusions that follow.

10For SN critical values, see Lemma A.4 in [SM] and for bootstrap critical values, see Lemma A.7 in [SM].
We begin the comparison between the two-step SN method and the two-step Lasso SN method. For all \(\theta \in \Theta \) and \(n \in \mathbb{N} \), our two-step Lasso SN method will have more power than the two-step SN method if and only if \(c_n^{SN,L}(\theta, \alpha) \leq c_n^{SN,2S}(\alpha) \). By inspecting their formulas, the previous equation occurs if and only if:

\[
|\hat{J}_L(\theta)| \leq \frac{\alpha}{\alpha - 2\beta_n} |\hat{J}_{SN}(\theta)|,
\]

(5.1)

where, by definition, \(\{\beta_n\}_{n \geq 1} \) has to satisfy \(\beta_n \leq \alpha/3 \). In turn, a sufficient condition for Eq. (5.1) is that \(\hat{J}_L(\theta) \subseteq \hat{J}_{SN}(\theta) \). As it turns out, it is possible to establish sufficient conditions for this to occur which are provided in the following result.

Theorem 5.1. For all \(\theta \in \Theta \) and \(n \in \mathbb{N} \),

\[
P[T_n(\theta) > c_n^{SN,L}(\theta, \alpha)] \geq P[T_n(\theta) > c_n^{SN,2S}(\alpha)]
\]

(5.2)

is implied by

\[
\hat{J}_L(\theta) \subseteq \hat{J}_{SN}(\theta).
\]

(5.3)

In turn, Eq. (5.3) occurs under any of the following circumstances:

\[
\frac{4}{3}c_n^{SN}(\beta_n) \geq \sqrt{n}\lambda_n, \quad \text{or,}
\]

\[
\beta_n \leq 0.1, M_{2,2+\delta}^2 n^{2/(2+\delta)} \geq 2, \quad \text{and} \quad \ln \left(\frac{p}{2\beta_n \sqrt{2\pi}} \right) \geq \frac{9}{8} \left(\frac{4}{3} + \varepsilon \right)^2 n^{\delta/(2+\delta)} M_{n,2+\delta}^{-2}
\]

(5.4)

(5.5)

where \(\varepsilon > 0 \) is as in Eq. (3.4).

Theorem 5.1 provides two sufficient conditions under which our two-step Lasso SN method will have greater or equal power than the two-step SN method in CCK14. The power difference is a direct consequence of Eq. (5.3), i.e., our Lasso-based first step inequality selection procedure chooses a subset of the inequalities in the SN-based first step. The first sufficient condition, viz., (5.4) is sharper than the second one, viz. (5.5) but the second one is of lower level and, thus, easier to interpret and understand. Notice that (5.5) is composed of three statements but, as we now explain, it is only the third statement (i.e. (5.5)) that could potentially be considered restrictive. The first, \(\beta \leq 10\% \), is non-restrictive as CCK14 require that \(\beta_n \leq \alpha/3 \) and the significance level \(\alpha \) is typically much lower than 30\%. The second, \(M_{2,2+\delta}^2 n^{2/(2+\delta)} \geq 2 \), is also non-restrictive since \(M_{2,2+\delta}^2 \) is typically a non-decreasing sequence of positive constants and \(n^{2/(2+\delta)} \to \infty \).

In principle, Theorem 5.1 allows for the possibility of the inequality in Eq. (5.2) being an equality. However, in cases in which the Lasso-based first step selects a strict subset of the moment inequalities
Figure 1: In a moment inequality model with $n = 400$, $\beta_n = 0.1\%$, $C = 2$, $M = M_{n,2+\delta} \in [0,10]$, and $p \in \{1,\ldots,1000\}$, the left (right) panel shows in red the configurations of parameters that do not satisfy Eq. (5.4) (Eq. (5.5), respectively). By Theorem 5.1, the regions in white are configurations of (p,M) for which the two-stage SN Lasso is strictly more powerful than two-stage SN.

chosen by the SN method (i.e. the inclusion in Eq. (5.3) is strict), the inequality in Eq. (5.2) can be strict.

In fact, the inequality in Eq. (5.2) can be strict even in cases in which the Lasso-based and SN-based first step agree on the set of binding moment inequalities. The intuition for this is that our Lasso-based method considers the usual α quantile while the other two-step methods consider the $\alpha - 2\beta_n$ quantile for the sequence of positive constants $\{\beta_n\}_{n \geq 1}$ (i.e. Eq. (5.1) is sufficient to obtain our result). This slight difference always plays in favor of the Lasso-based first step having more power.\footnote{This is clearly shown in our Monte Carlo section in Designs 5-6. In these cases, it is relatively easy for both first-step methods to agree on the correct set of binding moment inequalities (i.e. $J_L(\theta) = J_{SN}(\theta)$). Nevertheless, the slight difference in quantiles will result in a small but positive power advantage in favor of methods that use the Lasso in a first stage.}

Remark 5.1. Under the sufficient conditions of Theorem 5.1 the power advantage results also extend to our two-step bootstrap-Lasso and the hybrid two-step method based on the SN approximation-bootstrap. The reason for this is that the sufficient conditions imply Eq. (5.3) and this, together with the fact that our Lasso procedure uses the α quantile while the hybrid procedure uses the $\alpha - 2\beta_n$ quantile, would both result in a relative power advantage in favor of our two-step bootstrap Lasso.

Of course, the relevance of the result in Theorem 5.1 depends on the generality of the sufficient conditions in Eq. (5.4) and (5.5). Figure 1 provides heat maps that indicate combinations of values of $M_{n,2+\delta}$ and p under which Eqs. (5.4) and (5.5) are satisfied. The graphs clearly show these conditions are satisfied for a
large portion of the parameter space. In fact, the region in which Eq. (5.4) fails to hold is barely visible. In addition, the graph also confirms that Eq. (5.4) applies more generally than Eq. (5.5).

Remark 5.2. As long as the sufficient conditions hold, the power comparison in Theorem 5.1 holds in finite samples. In other words, under our sufficient conditions, if the inference method that uses a SN-based first step rejects the null hypothesis, then the corresponding inference method that uses a Lasso-based first step will also reject the null hypothesis. Expressed in terms of confidence sets, the confidence set based on our Lasso first step will be a subset of the corresponding confidence set based on a SN first step.

To conclude the section, we now compare the power of the two-step bootstrap procedures.

Theorem 5.2. Assume Assumption A.4 and let $B \in \{MB, EB\}$.

Part 1: For all $\theta \in \Theta$ and $n \in \mathbb{N}$,

$$
\hat{J}_L(\theta) \subseteq \hat{J}_B(\theta) \quad \text{implies that}
$$

$$
c_n^{B,L}(\theta, \alpha) \leq c_n^{B,2S}(\alpha)$$

which, in turn, implies that $P[T_n(\theta) > c_n^{B,2S}(\alpha)] \leq P[T_n(\theta) > c_n^{B,L}(\theta, \alpha)].$

Part 2: Eq. (5.6) occurs with probability approaching one, i.e.,

$$P[\hat{J}_L(\theta) \subseteq \hat{J}_B(\theta)] \geq 1 - Cn^{-c}$$

under the following sufficient condition: $M_{2,2+\delta}^2 n^{2/(2+\delta)} \geq 2$, $\beta_n \geq Cn^{-c}$ for some $C, c > 0$, and any one of the following conditions:

$$1 - \Phi \left(\frac{3}{2^{3/2}} (4/3 + \varepsilon) n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1} \right) \geq 3\beta_n, \quad \text{or,}$$

$$\sqrt{1 - \rho(\theta) \log(p)/2} - \sqrt{2 \log(1/[1 - 3\beta_n])} \geq \frac{3}{2^{3/2}} (4/3 + \varepsilon) n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1},$$

where $\rho(\theta) = \max_{j_1 \neq j_2} \text{corr}[X_{j_1}(\theta), X_{j_2}(\theta)].$

Part 3: By parts 1 and 2, and under any of the sufficient conditions in part 2,

$$P[T_n(\theta) > c_n^{B,2S}(\alpha)] \leq P[T_n(\theta) > c_n^{B,L}(\theta, \alpha)] + Cn^{-c}$$

Theorem 5.2 provides sufficient conditions under which any power advantage of the two-step bootstrap method in CCK14 relative to our two-step bootstrap Lasso will vanish as the sample size diverges to infinity.
Specifically, Eq. (5.11) indicates that, under any of the sufficient conditions, this power advantage will be not exceed $\tilde{C} n^{-\varepsilon}$. As in the case of the SN approximation, this relative power difference is a direct consequence of Eq. (5.6), i.e., our Lasso-based first step inequality selection procedure chooses a subset of the inequalities in the bootstrap-based first step.

As in the SN approximation, the relevance of the result in Theorem 5.2 depends on the generality of the sufficient condition. This condition has three parts. The first part, i.e., $M^2_{2,2+\delta} + \delta n^2/(2+\delta) \geq 2$, was already argued to be non-restrictive since $M^2_{2,2+\delta}$ is typically a non-decreasing sequence of positive constants and $n^2/(2+\delta) \to \infty$. The second part, i.e., $\beta_n \geq \tilde{C} n^{-\varepsilon}$ is also considered mild as $\{\beta_n\}_{n \geq 1}$ is a sequence of positive constants and $\tilde{C} n^{-\varepsilon}$ converges to zero. The third part is Eq. (5.9) or (5.10) and we deem it to be the more restrictive condition of the three. In the case of the latter, this condition can be understood as imposing a lower bound on the maximal pairwise correlation within the moment inequalities of the model.

6 Monte Carlo simulations

We now use Monte Carlo simulations to investigate the finite sample properties of our tests and to compare them to those proposed by CCK14. Our simulation setup follows closely the pure moment inequality model (i.e. $k = p$) considered in the Monte Carlo simulations in CCK14. For a hypothetical fixed parameter value $\theta \in \Theta$, we generate data from the model:

$$X_i(\theta) = \mu(\theta) + \epsilon_i, \quad i = 1, \ldots, n = 400,$$

where $\Sigma(\theta) = A'A$, $\epsilon_i = (\epsilon_{i,1}, \ldots, \epsilon_{i,p})$, and $p \in \{200, 500, 1000\}$. We simulate $\{\epsilon_i\}_{i=1}^n$ to be i.i.d. with $E[\epsilon_i] = 0_p$ and $Var[\epsilon_i] = I_p \times p$, and so $\{X_i(\theta)\}_{i=1}^n$ are i.i.d. with $E[X_i(\theta)] = \mu(\theta)$ and $Var[X_i(\theta)] = \Sigma(\theta)$. By definition, this model satisfies the moment (in)equality model in Eq. (2.1) if and only if $\mu(\theta) \leq 0_p$. In this context, we are interested in implementing the hypothesis test in Eqs. (2.4) or (2.5) with a significance level of $\alpha = 5\%$.

We simulate $\epsilon_i = (\epsilon_{i,1}, \ldots, \epsilon_{i,p})$ to be i.i.d. according to two distributions - (i) $\epsilon_{i,j}$ follows a t-distribution with four degrees of freedom divided by $\sqrt{2}$, i.e., $\epsilon_{i,j} \sim t_4/\sqrt{2}$ and (ii) $\epsilon_{i,j} \sim U(-\sqrt{3}, \sqrt{3})$. Note that both of these choices satisfy $E[\epsilon_i] = 0_p$ and $Var[\epsilon_i] = I_p \times p$. Since $(\epsilon_{i,1}, \ldots, \epsilon_{i,p})$ are i.i.d., the correlation structure across moment inequalities depends entirely on the matrix $\Sigma(\theta)$, for which we consider two possibilities - (i) $\Sigma(\theta)_{[j,k]} = 1[j = k] + \rho \cdot 1[j \neq k]$ and (ii) a Toeplitz structure, i.e., $\Sigma(\theta)_{[j,k]} = \rho^{|j-k|}$, for parameters $\rho \in \{0, 0.5, 0.9\}$. Finally, we repeat all our experiments 2,000 times.
The description of the model is completed by specifying \(\mu(\theta) \), given in Table 1. We consider ten different specifications of \(\mu(\theta) \) which, in combination with the rest of the parameters, results in fourteen simulation designs. Our first eight simulation designs correspond exactly to those in CCK14, half of which satisfy the null hypothesis and half of which do not. We complement these experiments with six designs that do not satisfy the null hypothesis. The additional experiments are constructed so that the moment inequalities agree with the null hypothesis are only slightly or moderately negative. As the slackness of these inequalities becomes smaller, it becomes harder for the two step inference methods to correctly classify these non-binding moment conditions as such, and thus to increase power. As a consequence, these new designs will help us understand which two step inference procedures have better ability in detecting slack moment inequalities.

<table>
<thead>
<tr>
<th>Design no.</th>
<th>({\mu_j(\theta) : j \in {1, \ldots, p}})</th>
<th>(\Sigma(\theta))</th>
<th>Hypothesis</th>
<th>CCK14 Design no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(-0.8 \cdot 1[j > 0.1p])</td>
<td>Equicorrelated</td>
<td>(H_0)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>(-0.8 \cdot 1[j > 0.1p])</td>
<td>Toeplitz</td>
<td>(H_0)</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>Equicorrelated</td>
<td>(H_0)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>Toeplitz</td>
<td>(H_0)</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>0.05</td>
<td>Equicorrelated</td>
<td>(H_1)</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0.05</td>
<td>Toeplitz</td>
<td>(H_1)</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>(-0.75 \cdot 1[j > 0.1p] + 0.05 \cdot 1[j \leq 0.1p])</td>
<td>Equicorrelated</td>
<td>(H_1)</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>(-0.75 \cdot 1[j > 0.1p] + 0.05 \cdot 1[j \leq 0.1p])</td>
<td>Toeplitz</td>
<td>(H_1)</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>(-0.6 \cdot 1[j > 0.1p] + 0.05 \cdot 1[j \leq 0.1p])</td>
<td>Toeplitz</td>
<td>(H_1)</td>
<td>New</td>
</tr>
<tr>
<td>10</td>
<td>(-0.5 \cdot 1[j > 0.1p] + 0.05 \cdot 1[j \leq 0.1p])</td>
<td>Toeplitz</td>
<td>(H_1)</td>
<td>New</td>
</tr>
<tr>
<td>11</td>
<td>(-0.4 \cdot 1[j > 0.1p] + 0.05 \cdot 1[j \leq 0.1p])</td>
<td>Toeplitz</td>
<td>(H_1)</td>
<td>New</td>
</tr>
<tr>
<td>12</td>
<td>(-0.3 \cdot 1[j > 0.1p] + 0.05 \cdot 1[j \leq 0.1p])</td>
<td>Toeplitz</td>
<td>(H_1)</td>
<td>New</td>
</tr>
<tr>
<td>13</td>
<td>(-0.2 \cdot 1[j > 0.1p] + 0.05 \cdot 1[j \leq 0.1p])</td>
<td>Toeplitz</td>
<td>(H_1)</td>
<td>New</td>
</tr>
<tr>
<td>14</td>
<td>(-0.1 \cdot 1[j > 0.1p] + 0.05 \cdot 1[j \leq 0.1p])</td>
<td>Toeplitz</td>
<td>(H_1)</td>
<td>New</td>
</tr>
</tbody>
</table>

Table 1: Parameter choices in our simulations.

We implement all the inference methods described in Table 2. These include all of the procedures described in the main text plus some additional “hybrid” methods (i.e. MB-H and EB-H). The bootstrap based methods are implemented with \(B = 1,000 \) bootstrap replications. Finally, for our Lasso-based first step, we use:

\[
\lambda_n = C \cdot n^{-1/2} \left(\hat{M}_{n,3}^2 n^{-1/3} - n^{-1} \right)^{-1},
\]

with \(C \in \{2, 4, 6\} \) and \(\hat{M}_{n,3} \equiv \max_{j=1, \ldots, p} \left(\frac{1}{n} \sum_{i=1}^{n} |X_{ij}(\theta)|^3 \right)^{1/3} \). This corresponds to the empirical analogue of Eq. (3.4) when \(\delta = 1 \) and \(\varepsilon \in \{2/3, 5/3, 8/3\} \).

\[\text{12}\]The last six designs only consider the case of \(\Sigma(\theta) \) having a Toeplitz structure for reasons of brevity. We carried out the same experiments with \(\Sigma(\theta) \) being equicorrelated and obtained qualitatively similar results. These are available from the authors, upon request.
We shall begin by considering the simulation designs in CCK14 for experiments 1-8, of which results from only experiment 2 are reported here. See [SM] for the other tables. Table 3 is concerned with the finite sample size control of the proposed tests. The general finding is that our procedures and those proposed by CCK14 are very rarely over-sized. In Table 3, the size of either test does not exceed 6.15%. Some procedures, such as SN-1S, may be heavily under-sized. Our simulations reveal that in order to achieve empirical rejection rates close to $\alpha = 5\%$ under the null hypothesis, one requires using a two step inference procedure that has a bootstrap-based second step (either multiplier or empirical bootstrap). If we adopt them separately, neither a two step inference procedure nor a bootstrap-based inference method are a guarantee of avoiding undersized tests. In particular, notice that a two-step procedure with a second step based on self-normalization results in undersized tests when $\rho = 0.9$, while a single-step bootstrap procedure results in undersized tests for all values of ρ.

Before turning to the individual setups for power comparison, let us remark that a first step based on our Lasso procedure compares favorably with a first step based on the self-normalization approximation. For example, SN-Lasso with $C = 2$ has more or equal power than SN-2S with $\beta_n = 0.1\%$. While the differences may often be small, this finding is in line with the power comparison in Section 5.

Designs 5-8 contain the designs used by CCK14 to gauge the power of their tests. Here we only report the results from Design 8; See [SM] for results under Designs 5-7. Note that under Design 8, 90% of the moment conditions have $\mu_j(\theta) = -0.75$ and our results seem to suggest that this value can be considered to be relative far away from being binding. We deduce this from the fact that all first step selection methods agree on the set of binding moment conditions, producing power numbers that are all very close to each other. See Table 13 in [SM] which provides the percentage of moment inequalities retained by each of the first step procedures in Design 8. For the t-distribution, all selection procedures retain around 10% of the
inequalities which is also the fraction that are truly binding (and, in this case, violated). Thus, all procedures
are reasonably powerful. For the uniform distribution, all procedures have an equal tendency to be almost
too aggressive in removing slack inequalities. However, we have seen from the size comparisons that this does
not seem to result in oversized tests. Finally, we notice that the power of our procedures hardly varies with
its tuning parameter C. The overall message of the simulation results in Designs 1-8 is that our Lasso-based
procedures are comparable in terms of size and power to the ones proposed by CCK14.

Next consider Designs 9-14 that correspond to modifications of the setup in Design 8 in which progressively
decrease the degree of slackness of the non-binding moment inequalities from -0.75 to values within -0.6
and -0.1. Here again we choose to present the results for Designs 10 and 12 to save space. Results for the
other cases are included in [SM]. In Table 5 that corresponds to Design 10, the degree of slackness of the
non-binding moment inequalities is still large enough so that it can be detected perfectly by all first step
selection methods. The power advantage in favor of the Lasso-based first step is clearly present in Design
12 as shown in Table 6. In this case, the MB Lasso with $C = 2$ has power which is at least 15%-point
higher than the best procedure proposed by CCK14 for both error distributions. Notice also that when the
error terms are t-distributed, the MB Lasso actually always has a power which is at least 20%-point higher
than its competitors and sometimes more than 50%-point (e.g. see $p = 1,000$ and $\rho = 0$). This power gain
mainly comes from the Lasso being better at removing the slack moment conditions. The overall message
from the results under Designs 9-14 is that our Lasso-based inference procedures can have higher power than
those proposed by CCK14 in cases when the slack moment conditions are difficult to distinguish from zero.
Finally, we notice that Designs 7-14 coincide in having 10% of the moment inequalities being violated. We
have also explored the behavior of our tests when this percentage drops to 5% or 1% and our Lasso based
procedure still remains reasonably powerful in these settings.13

7 Conclusions

This paper considers the problem of inference in a partially identified moment (in)equality model with
possibly many moment inequalities. Our contribution is to propose a two-step new inference method based
on the combination of two ideas. On the one hand, our test statistic and critical values are based on those
proposed by CCK14. On the other hand, we propose a new first step selection procedure based on the Lasso.
Our two-step inference method can be used to conduct hypothesis tests and to construct confidence sets for
the true parameter value.

13These are omitted from the paper for reasons of brevity. These are available from the authors, upon request.
Our inference method is shown to have very desirable properties. First, under reasonable conditions, it is uniformly valid, both in underlying parameter θ and distribution of the data. Second, by virtue of the results in CCK14, our test is asymptotically optimal in a minimax sense. Third, we compare the power of our method with that of the corresponding two-step method proposed by CCK14, both in theory and in simulations. On the theory front, we obtain a region of underlying parameters under which the power of our method dominates. Our simulations indicate that our inference method is usually as powerful as the one proposed by CCK14, and can sometimes be more powerful. In particular, our simulations reveal that the Lasso-based first step delivers more power in designs with sparse alternatives, i.e., when only few of the moment (in)equalities are violated. Fourth, we show that our Lasso-based first step can be implemented with a thresholding least squares procedure that makes it extremely simple to compute.
Table 3: Simulation results in Design 2: $\mu_j(\theta) = -0.8 \cdot 1[j > 0.1\theta], \Sigma(\theta)$ Toeplitz.

<table>
<thead>
<tr>
<th>Density</th>
<th>p</th>
<th>θ</th>
<th>Our methods</th>
<th>CCK14's methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Lasso</td>
<td>MB</td>
<td>Lasso</td>
<td>EB</td>
</tr>
<tr>
<td>C=2</td>
<td>C=4</td>
<td>C=6</td>
<td>C=2</td>
<td>C=4</td>
</tr>
<tr>
<td>$t_{4/\sqrt{2}}$</td>
<td>200</td>
<td>0.32</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>$U(-\sqrt{3}, \sqrt{3})$</td>
<td>200</td>
<td>0.32</td>
<td>0.15</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table 4: Simulation results in Design 8: $\mu_j(\theta) = -0.75 \cdot 1[j > 0.1\theta] + 0.05 \cdot 1[j \leq 0.1\theta], \Sigma(\theta)$ Toeplitz.

<table>
<thead>
<tr>
<th>Density</th>
<th>p</th>
<th>θ</th>
<th>Our methods</th>
<th>CCK14's methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN</td>
<td>Lasso</td>
<td>MB</td>
<td>Lasso</td>
<td>EB</td>
</tr>
<tr>
<td>C=2</td>
<td>C=4</td>
<td>C=6</td>
<td>C=2</td>
<td>C=4</td>
</tr>
<tr>
<td>$t_{4/\sqrt{2}}$</td>
<td>200</td>
<td>0.32</td>
<td>0.15</td>
<td>0.12</td>
</tr>
<tr>
<td>$U(-\sqrt{3}, \sqrt{3})$</td>
<td>200</td>
<td>0.32</td>
<td>0.15</td>
<td>0.12</td>
</tr>
</tbody>
</table>
$$\mu_j(\theta) = -0.5 \cdot [j > 0] \rho + 0.05 \cdot [j \leq 0] \rho,$$
A Supplementary material

This is the Supplementary material file, containing additional simulation results and all the proofs of the paper. We write [MP] while referring to the main paper.

A.1 Additional simulation results

Here we report the results of the simulation studies in its entirety, including the results that were left out in the main paper to save space. See Tables 1 and 2 in [MP] for the description of these simulation designs and the inference methods under consideration.

We shall begin by considering the simulation designs in CCK14 as reported in Tables 3-4. The first four tables are concerned with the finite sample size control of the proposed tests. The general finding is that our procedures and those proposed by CCK14 are very rarely over-sized. The maximal size observed for our procedures is 7.15 (e.g. EB Lasso in Design 4, $p = 1,000$, $\rho = 0$, and uniform error terms) while the corresponding number for CCK14 is 7.25 (e.g. EB-1S in Design 4, $p = 1,000$, $\rho = 0$, and uniform error terms). Some procedures, such as SN-1S, may be heavily under-sized. Our simulations reveal that in order to achieve empirical rejection rates close to $\alpha = 5\%$ under the null hypothesis, one requires using a two step inference procedure that has a bootstrap-based second step (either multiplier or empirical bootstrap). If we adopt them separately, neither a two step inference procedure nor a bootstrap-based inference method are a guarantee of avoiding undersized tests. In particular, notice that a two-step procedure with a second step based on self-normalization results in undersized tests when $\rho = 0.9$, while a single-step bootstrap procedure results in undersized tests for all values of ρ.

Before turning to the individual setups for power comparison, let us remark that a first step based on our Lasso procedure compares favorably with a first step based on the self-normalization approximation. For example, SN-Lasso with $C = 2$ has more or equal power than SN-2S with $\beta_n = 0.1\%$. While the differences may often be small, this finding is in line with the power comparison in Section 5.

Tables 6-4 contain the designs used by CCK14 to gauge the power of their tests. Tables 6 and 7 consider the case where all moment inequalities are violated. Since none of the moment conditions are slack, there is no room for power gains based on a first step procedure. In this sense, it should be no surprise that the choice of inequality selection method plays no role in these two designs. For example, the power of SN-Lasso is identical to the one of SN-1S while the power of SN-2S is also close to the one of SN-1S. However, the SN-2S has lower power than SN-1S for some values of its tuning parameter β while the power of SN Lasso appears to be invariant to its tuning parameter C. The latter is in accordance with our previous findings.
The bootstrap still improves power for high values of \(\rho \).

Next, we consider Tables 8 and 4. In this setting, 90% of the moment conditions have \(\mu_j(\theta) = -0.75 \) and our results seem to suggest that this value can be considered to be relative far away from being binding. We deduce this from the fact that all first step selection methods agree on the set of binding moment conditions, producing power numbers that are all very close to each other. This is shown in Table 13 which provides the percentage of moment inequalities retained by each of the first step procedures in Design 8. When the error terms are \(t \)-distributed, all selection procedures retain around 10% of the inequalities which is also the fraction that are truly binding (and, in this case, violated). Thus, all procedures are reasonably powerful. When the error terms are uniformly distributed, all procedures have an equal tendency to be almost too aggressive in removing slack inequalities. However, we have seen from the size comparisons that this does not seem to result in oversized tests. Finally, we notice that the power of our procedures hardly varies with its tuning parameter \(C \).

The overall message of the simulation results in Designs 1-8 is that our Lasso-based procedures are comparable in terms of size and power to the ones proposed by CCK14.

Tables 9-12 present simulations results for Designs 9-14. These correspond to modifications of the setup in Design 8 in which progressively decrease the degree of slackness of the non-binding moment inequalities from \(-0.75 \) to values within \(-0.6 \) and \(-0.1 \).

Tables 9-5 shows results for Designs 9 and 10. As in the case of Design 8, the degree of slackness of the non-binding moment inequalities is still large enough so that it can be detected perfectly by all first step selection methods.

This pattern starts to change with Design 11 as shown in Table 10. In this case, the MB Lasso with \(C = 2 \) always has power at least 20%-point higher than the most powerful procedure in CCK14. Table 14 holds the key to these power differences. Ideally, a powerful procedure should retain only the 10% of the moment inequalities that are binding (in this case, violated). Note that Lasso-based selection procedures indeed often retain close to 10% of the inequalities for \(C \in \{2, 4\} \). On the other hand, it may happen that the SN-based procedures retain more than 90% of the inequalities (e.g. see \(t \)-distributed errors, \(p = 1,000 \), and \(\rho = 0.9 \)).

The power advantage in favor of the Lasso-based first step is also present in Design 12 as shown in Table 6. In this case, the MB Lasso with \(C = 2 \) has power which is at least 15%-point higher than the best procedure proposed by CCK14 for the two types of error distributions considered. Notice also that when the error terms are \(t \)-distributed then the MB Lasso actually always has a power which is at least 20%-point higher than its competitors and sometimes more than 50%-point (e.g. see \(p = 1,000 \) and \(\rho = 0 \)). As in
the previous experiment, this power gain mainly comes from the Lasso being better at removing the slack moment conditions.

Table 11 shows the results for Design 13. In this case, the MB Lasso with $C = 2$ is always more powerful than the most powerful procedure of CCK14 (which is often MB-1S) by at least 5%-point when the error terms are t-distributed. Sometimes the difference is larger than 45%-points (e.g. see $p = 1,000$ and $\rho = 0$). In particular, we can see that the it is the Lasso and not the bootstrap which gives the big increase in power over the SN-1S procedure. For uniformly distributed error terms there seems to be no significant difference between our procedures and the ones in CCK14; all of them have relatively low power. Finally, these results are qualitatively similar to those in Design 14 as shown in Table 12.

The overall message from Tables 9-12 is that our Lasso-based inference procedures can have higher power than those proposed by CCK14 in cases when the slack moment conditions are difficult to distinguish from zero. Finally, we notice that Designs 7-14 coincide in having 10% of the moment inequalities being violated. We have also explored the behavior of our tests when this percentage drops to 5% or 1% and our Lasso based procedure still remains reasonably powerful in these settings.14

14These are omitted from the paper for reasons of brevity. These are available from the authors, upon request.
<table>
<thead>
<tr>
<th>Density</th>
<th>p</th>
<th>C=2</th>
<th>C=4</th>
<th>C=6</th>
<th>SN 1S</th>
<th>SN 2S</th>
<th>MB 1S</th>
<th>MB 2S</th>
<th>EB 1S</th>
<th>EB 2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01%</td>
<td>0.4</td>
</tr>
<tr>
<td>0.10%</td>
<td>0.4</td>
</tr>
<tr>
<td>1.00%</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Table 3: Simulation results in Design 1: $\mu_j(\theta) = -0.8 - \sqrt{j - 0.1}$, $\Sigma(\theta)$ equicorrelated.
Table 5: Simulation results in Design 4: $\mu_j(\theta) = 0$ for all $j = 1, \ldots, p$, $\Sigma(\theta)$ Toeplitz.

<table>
<thead>
<tr>
<th>Density</th>
<th>SN Lasso</th>
<th>MB Lasso</th>
<th>EB Lasso</th>
<th>SN 1S</th>
<th>SN 2S</th>
<th>MB 1S</th>
<th>MB H</th>
<th>MB 2S</th>
<th>EB 1S</th>
<th>EB H</th>
<th>EB 2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>C=2</td>
<td>C=4</td>
<td>C=6</td>
<td>C=2</td>
<td>C=4</td>
<td>C=6</td>
<td>C=2</td>
<td>C=4</td>
<td>C=6</td>
<td>C=2</td>
<td>C=4</td>
</tr>
<tr>
<td>0.01%</td>
</tr>
<tr>
<td>0.10%</td>
</tr>
<tr>
<td>1.00%</td>
</tr>
</tbody>
</table>

Table 6: Simulation results in Design 5: $\mu_j(\theta) = 0.005$ for all $j = 1, \ldots, p$, $\Sigma(\theta)$ equicorrelated.

<table>
<thead>
<tr>
<th>Density</th>
<th>SN Lasso</th>
<th>MB Lasso</th>
<th>EB Lasso</th>
<th>SN 1S</th>
<th>SN 2S</th>
<th>MB 1S</th>
<th>MB H</th>
<th>MB 2S</th>
<th>EB 1S</th>
<th>EB H</th>
<th>EB 2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>C=2</td>
<td>C=4</td>
<td>C=6</td>
<td>C=2</td>
<td>C=4</td>
<td>C=6</td>
<td>C=2</td>
<td>C=4</td>
<td>C=6</td>
<td>C=2</td>
<td>C=4</td>
</tr>
<tr>
<td>0.01%</td>
</tr>
<tr>
<td>0.10%</td>
</tr>
<tr>
<td>1.00%</td>
</tr>
</tbody>
</table>
Table 7: Simulation results in Design 6: \(\mu_j(\theta) = 0.05 \) for all \(j = 1, \ldots, p \). \(\Sigma(\theta) \) Toeplitz.

<table>
<thead>
<tr>
<th>Density</th>
<th>(p)</th>
<th>(\rho)</th>
<th>Our methods</th>
<th>CCK14's methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SN})</td>
<td>(L)</td>
<td>(\text{MB})</td>
<td>(\text{EB})</td>
<td>(\text{SN})</td>
</tr>
<tr>
<td>0.01%</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0.01%</td>
</tr>
<tr>
<td>0.10%</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0.10%</td>
</tr>
<tr>
<td>1.00%</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1.00%</td>
</tr>
</tbody>
</table>

Table 8: Simulation results in Design 7: \(\mu_j(\theta) = -0.75 \cdot \mathbb{1}_{j > 0} + 0.05 \cdot \mathbb{1}_{j \leq 0} \). \(\Sigma(\theta) \) equicorrelated.

<table>
<thead>
<tr>
<th>Density</th>
<th>(p)</th>
<th>(\rho)</th>
<th>Our methods</th>
<th>CCK14's methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SN})</td>
<td>(L)</td>
<td>(\text{MB})</td>
<td>(\text{EB})</td>
<td>(\text{SN})</td>
</tr>
<tr>
<td>0.01%</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0.01%</td>
</tr>
<tr>
<td>0.10%</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>0.10%</td>
</tr>
<tr>
<td>1.00%</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1.00%</td>
</tr>
</tbody>
</table>

32
Table 9: Simulation results in Design 9:

<table>
<thead>
<tr>
<th>C = 2</th>
<th>C = 4</th>
<th>C = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN 1S</td>
<td>SN 2S</td>
<td>MB 1S</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.10%</td>
<td>1.00%</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.10%</td>
<td>1.00%</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.10%</td>
<td>1.00%</td>
</tr>
</tbody>
</table>

Table 10: Simulation results in Design 11:

<table>
<thead>
<tr>
<th>C = 2</th>
<th>C = 4</th>
<th>C = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN 1S</td>
<td>SN 2S</td>
<td>MB 1S</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.10%</td>
<td>1.00%</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.10%</td>
<td>1.00%</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.10%</td>
<td>1.00%</td>
</tr>
<tr>
<td>Density</td>
<td>p</td>
<td>(\rho)</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>0.10%</td>
<td>0.10%</td>
<td>0.10%</td>
</tr>
<tr>
<td>1.00%</td>
<td>1.00%</td>
<td>1.00%</td>
</tr>
</tbody>
</table>

Table 11: Simulation results in Design 13: \(\mu_j(\theta) = -0.2 \cdot 1[j > 0] + 0.05 \cdot 1[j \leq 0], \Sigma(\theta) \) Toeplitz.

<table>
<thead>
<tr>
<th>Density</th>
<th>p</th>
<th>(\rho)</th>
<th>(C = 2)</th>
<th>(C = 4)</th>
<th>(C = 6)</th>
<th>(C = 2)</th>
<th>(C = 4)</th>
<th>(C = 6)</th>
<th>(\theta)</th>
<th>(\theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01%</td>
</tr>
<tr>
<td>0.10%</td>
</tr>
<tr>
<td>1.00%</td>
</tr>
</tbody>
</table>

Table 12: Simulation results in Design 14: \(\mu_j(\theta) = -0.1 \cdot 1[j > 0] + 0.05 \cdot 1[j \leq 0], \Sigma(\theta) \) Toeplitz.
<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
</tr>
<tr>
<td>3000</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>0.99</td>
</tr>
<tr>
<td>0.999</td>
</tr>
<tr>
<td>0.9999</td>
</tr>
<tr>
<td>0.99999</td>
</tr>
</tbody>
</table>

Table 15: Percentage of moment inequalities retained by first step selection procedures in Design 8: $\mu_\theta (\theta) = -0.75 \cdot [j > 0.1 | p] + 0.05 \cdot [j < 0.1 | p]$.

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
</tr>
<tr>
<td>3000</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>500</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>0.99</td>
</tr>
<tr>
<td>0.999</td>
</tr>
<tr>
<td>0.9999</td>
</tr>
<tr>
<td>0.99999</td>
</tr>
</tbody>
</table>

Table 16: Percentage of moment inequalities retained by first step selection procedures in Design 11: $\mu_\theta (\theta) = -0.4 \cdot [j > 0.1 | p] + 0.05 \cdot [j < 0.1 | p]$.

Σ(θ) Toeplitz.

<table>
<thead>
<tr>
<th>Density</th>
<th>p</th>
<th>Our methods</th>
<th>Lasso selection</th>
<th>SN selection</th>
<th>MB selection</th>
<th>EB Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>C=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t_{4/\sqrt{2}}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0</td>
<td>9.99</td>
<td>10.00</td>
<td>10.93</td>
<td>10.96</td>
<td>10.94</td>
</tr>
<tr>
<td>0.5</td>
<td>0</td>
<td>9.99</td>
<td>10.00</td>
<td>10.93</td>
<td>10.96</td>
<td>10.94</td>
</tr>
<tr>
<td>0.9</td>
<td>0</td>
<td>9.99</td>
<td>10.00</td>
<td>10.93</td>
<td>10.96</td>
<td>10.94</td>
</tr>
</tbody>
</table>

U(\sqrt{3},-\sqrt{3})
A.2 Proofs

Throughout this section, we omit the dependence of all expressions on θ. Furthermore, LHS and RHS abbreviate “left hand side” and “right hand side”, respectively.

A.3 Auxiliary results

Lemma A.1. Assume Assumptions A.1-A.2. Then, for any γ s.t. $\sqrt{n\gamma}/\sqrt{1 + \gamma^2} \in [0, n^{\delta/(2(2+\delta))}M^{-1}_{n,2+\delta}]$,

$$P\left[\max_{j=1,\ldots,p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > \gamma \right] \leq 2p(1 - \Phi(\sqrt{n\gamma}/\sqrt{1 + \gamma^2}))\left[1 + Kn^{-\delta/2}M_{n,2+\delta}^{2+\delta}(1 + \sqrt{n\gamma}/\sqrt{1 + \gamma^2})^{2+\delta} \right],$$ \hspace{1cm} (A.1)

where K is a universal constant.

Proof. For any $i = 1, \ldots, n$ and $j = 1, \ldots, p$, let $Z_{ij} \equiv [X_{ij} - \mu_j]/\sigma_j$ and $U_j \equiv \sqrt{n} \sum_{i=1}^n [Z_{ij}/n]/\sqrt{\sum_{i=1}^n [Z_{ij}^2/n]}$. By simple algebra, it follows that $\sqrt{n}[\hat{\mu}_j - \mu_j]/\hat{\sigma}_j = U_j/\sqrt{1 - U_j^2/n}$ and so

$$\sqrt{n}[\hat{\mu}_j - \mu_j]/\hat{\sigma}_j = |U_j|/\sqrt{1 - |U_j|^2/n}.$$

Notice that the right hand side of the above display is increasing in $|U_j|$. Therefore,

$$\left\{ \max_{j=1,\ldots,p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > \gamma \right\} = \left\{ \max_{1 \leq j \leq p} |U_j|/\sqrt{1 - |U_j|^2/n} > \sqrt{n}\gamma \right\}
\begin{align*}
&= \left\{ \max_{1 \leq j \leq p} |U_j| > \sqrt{n}\gamma/\sqrt{1 + \gamma^2} \right\} \\
&\subseteq \left\{ \max_{1 \leq j \leq p} |U_j| \geq \sqrt{n}\gamma/\sqrt{1 + \gamma^2} \right\}
\end{align*}
$$

such that

$$P\left[\max_{j=1,\ldots,p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > \gamma \right] \leq P\left[\max_{1 \leq j \leq p} |U_j| \geq \sqrt{n}\gamma/\sqrt{1 + \gamma^2} \right] \leq \sum_{j=1}^p P\left[U_j \geq \sqrt{n}\gamma/\sqrt{1 + \gamma^2} \right] \leq \sum_{j=1}^p P\left[U_j \geq \sqrt{n}\gamma/\sqrt{1 + \gamma^2} \right] + \sum_{j=1}^p P\left[-U_j \geq \sqrt{n}\gamma/\sqrt{1 + \gamma^2} \right] \leq 2p \left(1 - \Phi(\sqrt{n}\gamma/\sqrt{1 + \gamma^2}) \right) \left[1 + Kn^{-\delta/2}M_{n,2+\delta}^{2+\delta}(1 + \sqrt{n}\gamma/\sqrt{1 + \gamma^2})^{2+\delta} \right].$$

where the second line follows from Bonferroni bound and the fourth line follows from Eqs. (A.2) and (A.3) below which are shown next.

To show Eq. (A.2), consider the following argument. For every $j = 1, \ldots, p$, $\{Z_{ij}\}_{i=1}^n$ is a sequence of independent
centered ($E[Z_{ij}] = 0$) random variables with $E[Z_{ij}^2] = 1$ and $E[|Z_{ij}|^{2+\delta}] \leq M_{n,2+\delta}^{2+\delta} < \infty$. If we let $S_{nj} = \sum_{i=1}^{n} Z_{ij}$, $V_{nj}^2 = \sum_{i=1}^{n} Z_{ij}^2$, and $0 < D_{nj} = [n^{-1} \sum_{i=1}^{n} E[|Z_{ij}|^{2+\delta}]]^{1/(2+\delta)} \leq M_{n,2+\delta} < \infty$, then Lemma A.1 in CCK14 implies that uniformly in $t \in [0, n^{\delta/(2(2+\delta))} D_{nj}^{-1}]$

$$|P(S_{nj}/V_{nj} \geq t) - 1| \leq Kn^{-\delta/2} D_{nj}^{2+\delta} (1+t)^{2+\delta},$$

where K is a universal constant.

By using that $S_{nj}/V_{nj} = U_j$, $D_{nj} \leq M_{n,2+\delta}$, and applying the inequality in the above display to $t = \sqrt{n}/\sqrt{1+\gamma^2}$, it then follows that for any γ s.t. $\sqrt{n}/\sqrt{1+\gamma^2} \in [0, n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1}]$,

$$|P(U_j \geq \sqrt{n}/\sqrt{1+\gamma^2} - (1 - \Phi(\sqrt{n}/\sqrt{1+\gamma^2}))|$$

$$\leq Kn^{-\delta/2} D_{nj}^{2+\delta} (1 - \Phi(\sqrt{n}/\sqrt{1+\gamma^2})) (1 + \sqrt{n}/\sqrt{1+\gamma^2})^{2+\delta}.$$

Thus, for any γ s.t. $\sqrt{n}/\sqrt{1+\gamma^2} \in [0, n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1}]$,

$$\sum_{j=1}^{p} P \left[U_j \geq \sqrt{n}/\sqrt{1+\gamma^2} \right] \leq p \left(1 - \Phi(\sqrt{n}/\sqrt{1+\gamma^2}) \right) \left[1 + Kn^{-\delta/2} M_{n,2+\delta}^{2+\delta} (1 + \sqrt{n}/\sqrt{1+\gamma^2})^{2+\delta} \right].$$

(A.2)

By applying the same argument for $-Z_{ij}$ instead of Z_{ij}, we deduce that for any γ s.t. $\sqrt{n}/\sqrt{1+\gamma^2} \in [0, n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1}]$,

$$\sum_{j=1}^{p} P \left[-U_j \geq \sqrt{n}/\sqrt{1+\gamma^2} \right] \leq p \left(1 - \Phi(\sqrt{n}/\sqrt{1+\gamma^2}) \right) \left[1 + Kn^{-\delta/2} M_{n,2+\delta}^{2+\delta} (1 + \sqrt{n}/\sqrt{1+\gamma^2})^{2+\delta} \right].$$

(A.3)

This completes the proof.

\[\square \]

Lemma A.2. Assume Assumptions A.1-A.2 and let $\{\gamma_n\}_{n \geq 1} \subseteq \mathbb{R}$ satisfy $\gamma_n \geq \gamma_n^*$ for all n sufficiently large, where

$$\gamma_n^* = n^{-1/2} (M_{n,2+\delta}^2 n^{-\delta/(2+\delta)} - n^{-1})^{-1/2} = (n M_{n,2+\delta}^{2+\delta} - 1) (n M_{n,2+\delta}^{2+\delta} - 2/(2+\delta))^{-1/2} \to 0.$$

(A.4)

Then,

$$P \left[\max_{j=1, \ldots, p} |\bar{\mu}_j - \mu_j|/\hat{\sigma}_j > \gamma_n \right] \leq 2p \exp \left(-2^{-1} n^{\delta/(2+\delta)} / M_{n,2+\delta}^2 \right) \left[1 + K(M_{n,2+\delta}/n^{\delta/(2(2+\delta))} + 1)^{2+\delta} \right] \to 0.$$

(A.5)
Proof. Since \(\gamma_n \geq \gamma_n^* \), Eq. (A.5) holds if we show

\[
\Pr \left[\max_{j=1,\ldots,p} \left| \tilde{\mu}_j - \mu_j \right| / \tilde{\sigma}_j > \gamma_n^* \right] \\
\leq 2p \exp \left(-2^{-1} n^{\delta/(2+\delta)} / M_{n,2+\delta}^2 \right) \left[1 + K(M_{n,2+\delta} / n^\delta) + 1 \right]^{2+\delta} \to 0. \tag{A.6}
\]

As we show next, Eq. (A.6) follows from using Lemma A.1 with \(\gamma = \gamma_n^* \). Notice that this choice implies \(\sqrt{n} \gamma_n^* / \sqrt{1 + (\gamma_n^*)^2} = n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1} \) making \(\gamma_n^* \) valid choice in Lemma A.1. Simple algebra reveals that the equalities in Eq. (A.4) hold and the convergence to zero in Eq. (A.4) follows from \(n M_{n,2+\delta}^{2+\delta} \to \infty \).

Then, Lemma A.1 with \(\gamma = \gamma_n^* \) implies that

\[
\Pr \left[\max_{j=1,\ldots,p} \left| \tilde{\mu}_j - \mu_j \right| / \tilde{\sigma}_j > \gamma_n^* \right] \\
\leq 2p \left(1 - \Phi(n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1}) \right) \left[1 + K n^{-\delta/2} M_{n,2+\delta}^{2+\delta} \left(1 + n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1} \right)^{2+\delta} \right] \\
\leq 2p \exp \left(-2^{-1} n^{\delta/(2+\delta)} / M_{n,2+\delta}^2 \right) \left[1 + K(n^{\delta/(2(2+\delta))} M_{n,2+\delta} + 1)^{2+\delta} \right],
\]

where we have used that \(1 - \Phi(t) \leq e^{-t^2/2} \). We now show that the right hand side of the above display converges to zero by assumption A.2. First, notice that \(M_{n,2+\delta}^{2+\delta}(\ln(2k-p))^{2+\delta/2} n^{-\delta/2} \to 0 \). Next, \((2k-p) > 1 \) implies that \(M_{n,2+\delta}^{2+\delta} n^{-\delta/2} \to 0 \) and, in turn, this implies that \(n^{-\delta/(2(2+\delta))} M_{n,2+\delta} \to 0 \). Furthermore, notice that \(M_{n,2+\delta}^{2+\delta}(\ln(2k-p))^{2+\delta/2} n^{-\delta/2} \to 0 \), \(M_{n,2+\delta}^{2+\delta}(\ln(2k-p))^{2+\delta/2} n^{-\delta/2} \to 0 \), and \((2k-p) \geq p \) implies that \(n^{\delta/(2(2+\delta))} (M_{n,2+\delta}^2 \ln p)^{-1} \to \infty \). This implies that

\[
p \exp \left(-2^{-1} n^{\delta/(2+\delta)} / M_{n,2+\delta}^2 \right) = \exp \left(\ln p \left[1 - 2^{-1} n^{\delta/(2+\delta)} (M_{n,2+\delta}^2 \ln p)^{-1} \right] \right) \to 0,
\]

completing the proof. \(\square \)

Lemma A.3. For every \(c \in (0,1) \),

\[
P \left[\max_{j=1,\ldots,p} |\tilde{\sigma}_j / \sigma_j - 1| > K(n^{-1-c/2} B_n^2 \ln p + n^{-3/2} B_n^2 (\ln p)^2) \right] \leq \tilde{K} n^{-c},
\]

where \(B_n = E[\max_{j=1,\ldots,p} Z_{1,j}^4]^{1/4} \) and \(\tilde{K}, \tilde{K} \) are universal constants.

Proof. This result is shown in Chernozhukov et al. (2014c, Lemma A.5). \(\square \)

Proof of Lemma 3.1 of [MP]. By definition, \(J \subseteq I \) where \(I \) is as defined in the proof of Theorem 4.2 of [MP]. Then, the result is a corollary of Step 2 in the proof of Theorem 4.2 of [MP]. \(\square \)

Proof of Lemma 3.2 of [MP]. Fix \(j = 1,\ldots,p \) arbitrarily. B"uhlmann and van de Geer (2011, Eq. (2.5)) implies that the Lasso estimator in Eq. (3.2) of [MP] satisfies:

\[
\hat{\mu}_{L,j} = \text{sign}(\hat{\mu}_j) \times \max\{|\hat{\mu}_j| - \hat{\sigma}_j \lambda_n/2, 0\} \quad \forall j = 1,\ldots,p. \tag{A.7}
\]

38
To complete the proof, it suffices to show that:

$$\hat{\mu}_{L,j} \geq -\hat{\sigma}_j \lambda_n \iff \hat{\mu}_j \geq -3\hat{\sigma}_j \lambda_n / 2.$$ (A.8)

We divide the verification into four cases. First, consider that $\hat{\sigma}_j = 0$. If so, $-\hat{\sigma}_j \lambda_n = -3\hat{\sigma}_j \lambda_n / 2 = 0$ and the $\hat{\mu}_{L,j} = \text{sign}(\hat{\mu}_j) \times \max(|\hat{\mu}_j|, 0) = \hat{\mu}_j$ and so Eq. (A.8) holds. Second, consider that $\hat{\sigma}_j > 0$ and $\hat{\mu}_j \geq 0$. By the case under consideration, $\hat{\mu}_j \geq 0 \geq -3\hat{\sigma}_j \lambda_n / 2$ and so the RHS condition in Eq. (A.8) is satisfied. In addition, Eq. (A.7) implies that $\hat{\mu}_{L,j} \geq 0 \geq -\hat{\sigma}_j \lambda_n$ and so the LHS of condition in Eq. (A.8) is also satisfied and, thus, Eq. (A.8) holds. Third, consider that $\hat{\sigma}_j > 0$ and $\hat{\mu}_j \in [-\hat{\sigma}_j \lambda_n / 2, 0)$. By the case under consideration, $\hat{\mu}_j \geq -\hat{\sigma}_j \lambda_n / 2 \geq -3\hat{\sigma}_j \lambda_n / 2$ and so the RHS condition in Eq. (A.8) is satisfied. In addition, Eq. (A.7) implies that $\hat{\mu}_{L,j} = 0 \geq -\hat{\sigma}_j \lambda_n$ and so the LHS of condition in Eq. (A.8) is also satisfied and, thus, Eq. (A.8) holds. Fourth and finally, consider that $\hat{\sigma}_j > 0$ and $\hat{\mu}_j < -\hat{\sigma}_j \lambda_n / 2$. Then, Eq. (A.7) implies that $\hat{\mu}_{L,j} = \hat{\mu}_j + \hat{\sigma}_j \lambda_n / 2$ and so Eq. (A.8) holds. \qed

A.4 Results for the self-normalization approximation

Lemma A.4. For any $\pi \in (0, 0.5]$, $n \in \mathbb{N}$, and $d \in \{0, 1 \ldots, 2k - p\}$, define the function:

$$CV(d) \equiv \begin{cases} 0 & \text{if } d = 0, \\
\frac{\Phi^{-1}(1-\pi/d)}{\sqrt{1-(\Phi^{-1}(1-\pi/d))^2/n}} & \text{if } d > 0.
\end{cases}$$

Then, $CV : \{0, 1 \ldots, 2k - p\} \rightarrow \mathbb{R}^+$ is weakly increasing for n sufficiently large.

Proof. First, we show that $CV(d) \leq CV(d + 1)$ for $d = 0$. To see this, use that $\pi \leq 0.5$ such that $\Phi^{-1}(1 - \pi) \geq 0$, implying that $CV(1) \geq 0 = CV(0)$.

Second, we show that $CV(d) \leq CV(d + 1)$ for any $d > 0$. To see this, notice that $CV(d)$ and $CV(d + 1)$ are both the result of $g_1(g_2(\cdot)) : \{1, \ldots, 2k - p\} \rightarrow \mathbb{R}$ where

$$g_1(y) = y / \sqrt{1 - y^2 / n} : [0, \sqrt{n}) \rightarrow \mathbb{R}^+,$n$$

$$g_2(d) = \Phi^{-1}(1 - \pi / d) : \{1, \ldots, 2k - p\} \rightarrow \mathbb{R}.$$ We first show that the composition $g_1(g_2(\cdot))$ is well-defined by verifying that the range of g_2 is a subset of the support of g_1. Notice that g_2 is an increasing function and so $g_2(d) \in [g_2(1), g_2(2(k-p)+p)] = [\Phi^{-1}(1-\pi), \Phi^{-1}(1-\pi/(2k-p))]$.

On the one hand, $\pi \leq 0.5$ implies that $\Phi^{-1}(1 - \pi) \geq 0$. On the other hand, we need to verify that $\Phi^{-1}(1-\pi/(2k-p)) \leq \sqrt{n}$ or, equivalently, $(1 - \Phi(\sqrt{n})) \leq \pi/(2k-p)$ for n sufficiently large. The latter can be verified by showing that $\frac{1}{2} \exp(-n/2) \leq \pi/(2k-p)$ holds for all n large enough because $(1 - \Phi(\sqrt{n})) \leq (1/2) \exp(-n/2)$.

This is true by Assumption A.2 and so $g_1(g_2(\cdot))$ is well-defined. From here, the monotonicity of $CV(d)$ follows from the fact that g_1 and g_2 are both weakly increasing functions and so $CV(d) = g_1(g_2(d)) \leq g_1(g_2(d + 1)) = CV(d + 1)$. \qed

39
Lemma A.5. Assume Assumptions A.1-A.2, and that \(H_0 \) holds. For any non-stochastic set \(L \subseteq \{1, \ldots, p\} \), define:

\[
T_n(L) = \max \left\{ \max_{j \in L} \frac{\sqrt{n}\hat{\mu}_j}{\hat{\sigma}_j}, \max_{s=p+1, \ldots, k} \frac{\sqrt{n}|\hat{\mu}_s|}{\sigma_s} \right\},
\]

\[
c_n^{SN}(\alpha, |L|) \equiv \frac{-\Phi^{-1}(1 - \alpha/(2(k - p) + |L|))}{\sqrt{1 - (\Phi^{-1}(1 - \alpha/(2(k - p) + |L|)))^2/n}}.
\]

Then,

\[
P[T_n(L) > c_n^{SN}(\alpha, |L|)] \leq \alpha + R_n,
\]

where \(R_n \equiv \alpha K n^{-\delta/2} M_{n,2+\delta}^2 (1 + \Phi^{-1}(1 - \alpha/(2k - p)))^{2+\delta} \to 0 \) and \(K \) is a universal constant.

Proof. Under \(H_0 \), \(\sqrt{n}\hat{\mu}_j/\hat{\sigma}_j \leq \sqrt{n}(\hat{\mu}_j - \mu_j)/\hat{\sigma}_j \) for all \(j \in L \) and \(\sqrt{n}|\hat{\mu}_s|/\sigma_s = \sqrt{n}|\hat{\mu}_s - \mu_s|/\sigma_s \) for \(s = p + 1, \ldots, k \).

From this, we deduce that:

\[
T_n(L) = \max \left\{ \max_{j \in L} \frac{\sqrt{n}\hat{\mu}_j}{\hat{\sigma}_j}, \max_{s=p+1, \ldots, k} \frac{\sqrt{n}|\hat{\mu}_s|}{\sigma_s} \right\} \leq \max \left\{ \max_{j \in L} \frac{\sqrt{n}(\hat{\mu}_j - \mu_j)}{\hat{\sigma}_j}, \max_{s=p+1, \ldots, k} \frac{\sqrt{n}|\hat{\mu}_s - \mu_s|}{\sigma_s} \right\} = T_n^*(L).
\]

For any \(i = 1, \ldots, n \) and \(j = 1, \ldots, k \), let \(Z_{ij} \equiv [X_{ij} - \mu_j]/\sigma_j \) and \(U_j \equiv \sqrt{n} \sum_{i=1}^n [Z_{ij}/n] / \sqrt{\sum_{i=1}^n [Z_{ij}^2/n]} \). By simple algebra, it follows that \(\sqrt{n}(\hat{\mu}_j - \mu_j)/\sigma_j = U_j/\sqrt{1 - |U_j|^2/n} \) and so

\[
\sqrt{n}(\hat{\mu}_j - \mu_j)/\hat{\sigma}_j = U_j/\sqrt{1 - |U_j|^2/n},
\]

\[
\sqrt{n}|\hat{\mu}_j - \mu_j|/\hat{\sigma}_j = |U_j|/\sqrt{1 - |U_j|^2/n}.
\]

Notice that both expressions on the RHS of the above display are increasing in \(U_j \) and \(|U_j| \), respectively. Therefore, for any \(c \geq 0 \),

\[
\{T_n^*(L) > c\} = \left\{ \max_{j \in L} \frac{\sqrt{n}(\hat{\mu}_j - \mu_j)}{\hat{\sigma}_j} > c \right\} \cup \left\{ \max_{s=p+1, \ldots, k} \frac{\sqrt{n}|\hat{\mu}_s - \mu_s|}{\sigma_s} > c \right\}
\]

\[
= \left\{ \max_{j \in L} U_j/\sqrt{1 - |U_j|^2/n} > c \right\} \cup \left\{ \max_{s=p+1, \ldots, k} |U_s|/\sqrt{1 - |U_s|^2/n} > c \right\}
\]

\[
= \left\{ \max_{j \in L} U_j > c/\sqrt{1 + c^2/n} \right\} \cup \left\{ \max_{s=p+1, \ldots, k} |U_s| > c/\sqrt{1 + c^2/n} \right\}.
\]
From here, we conclude that for all \(c \geq 0\) such that \(c/\sqrt{1 + c^2/n} \in [0, n^{\delta/(2(2+\delta))}M_{n,2+\delta}^{-1}]\), one has

\[
P[T_n(L) > c] \
\leq P[T_n^*(L) > c] \
\leq P \{ \max_{j \in L} U_j > c/\sqrt{1 + c^2/n} \} \cup \{ \max_{s=p+1,\ldots,k} |U_s| > c/\sqrt{1 + c^2/n} \} \
\leq \sum_{j \in L} P \left[U_j > c/\sqrt{1 + c^2/n} \right] + \sum_{s=p+1}^k P \left[|U_s| > c/\sqrt{1 + c^2/n} \right] \
\leq \sum_{j \in L} P \left[U_j > c/\sqrt{1 + c^2/n} \right] + \sum_{s=p+1}^k P \left[U_s > c/\sqrt{1 + c^2/n} \right] + \sum_{s=p+1}^k P \left[-U_j > c/\sqrt{1 + c^2/n} \right] \
\leq (2(k-p) + |L|)(1 - \Phi(c/\sqrt{1 + c^2/n})) [1 + Kn^{-\delta/2}M_{n,2+\delta}^{2+\delta}(1 + c/\sqrt{1 + c^2/n})^{2+\delta}],
\]

where the first inequality is a result of \(T_n(L) \leq T_n^*(L)\), the third inequality is based on a Bonferroni bound, the last inequality follows from Eqs. (A.2)-(A.3) in Lemma A.1 upon choosing \(\gamma = c/\sqrt{n}\) in that result.

We are interested in using \(c = c_n^{SN}(\alpha, |L|)\) in the previous display. To see that this is a valid choice, i.e. \(c_n^{SN}(\alpha, |L|)/\sqrt{1 + c_n^{SN}(\alpha, |L|)^2/n} \in [0, n^{\delta/(2(2+\delta))}M_{n,2+\delta}^{-1}]\), first observe that

\[
c_n^{SN}(\alpha, |L|)/\sqrt{1 + c_n^{SN}(\alpha, |L|)^2/n} = \Phi^{-1}(1 - \alpha/(2(k-p) + |L|)) = (2(k-p) + |L|)[1 - \Phi(c_n^{SN}(\alpha, |L|)/\sqrt{1 + c_n^{SN}(\alpha, |L|)^2/n})] = \alpha.
\]

Notice that \(c_n^{SN}(\alpha, |L|) \geq 0\) implies that \(c_n^{SN}(\alpha, |L|)/\sqrt{1 + c_n^{SN}(\alpha, |L|)^2/n} \geq 0\). Second, by the first line in the above display \(c_n^{SN}(\alpha, |L|)/\sqrt{1 + c_n^{SN}(\alpha, |L|)^2/n} \leq n^{\delta/(2(2+\delta))}M_{n,2+\delta}^{-1}\) holds if and only if

\[
\Phi^{-1}(1 - \alpha/(|L| + 2(k-p)))M_{n,2+\delta}n^{-\delta/(2(2+\delta))} \leq 1.
\]

To show that this holds for \(n\) sufficiently large it suffices to show that the LHS converges to zero. To this end, notice that \(\Phi^{-1}(1 - \alpha/(2(k-p) + |L|)) \leq 2\ln((|L| + 2(k-p))/\alpha) \leq 2\ln(2k-p)/\alpha\), where the first inequality uses that \(1 - \Phi(t) \leq \exp(-t^2/2)\) for any \(t > 0\) and the second inequality follows from \(|L| \leq p\). These inequalities and \(\ln((2k-p)/\alpha)M_{n,2+\delta}n^{-\delta/(2+\delta)} \rightarrow 0\) (by Assumption A.2) complete the verification.

Thus, \(c_n^{SN}(\alpha, |L|)/\sqrt{1 + c_n^{SN}(\alpha, |L|)^2/n} \in [0, n^{\delta/(2(2+\delta))}M_{n,2+\delta}^{-1}]\) and we conclude that

\[
P[T_n > c_n^{SN}(\alpha, |L|)] \leq \alpha + \alpha K n^{-\delta/2}M_{n,2+\delta}^{2+\delta}(1 + \Phi^{-1}(1 - \alpha/(2(k-p) + |L|)))^{2+\delta} \leq \alpha + R_n,
\]

where the second inequality follows from \(f(x) \equiv \Phi^{-1}(1 - \alpha/(2(k-p) + x))\) being increasing and \(|L| \leq p\). To conclude the proof, it suffices to show that \(R_n \rightarrow 0\). To this end, consider the following argument where \(K\) can change from
We divide the proof into three steps.

Step 1. We need that $\hat{\mu}_j \leq 0$ for all $j \in J_2^c$ with high probability, i.e., for any $c \in (0,1)$,

$$P \left(\bigcup_{j \in J_2^c} \{ \hat{\mu}_j > 0 \} \right) \leq 2p \exp \left(-2^{-1} n^{\delta/(2+\delta)} / M_{n,2+\delta}^2 \right) \left[1 + K \left(M_{n,2+\delta} / n^{\delta/(2+\delta)} \right) + 1 \right]^{2+\delta} + K n^{-c} \rightarrow 0,$$

where K and \hat{K} are universal constants.

First, we show that for any $r \in (0,1)$,

$$\{ \bigcup_{j \in J_2^c} \{ \hat{\mu}_j > 0 \} \} \cap \left\{ \sup_{j=1,\ldots,p} |\hat{\sigma}_j - \sigma_j| \leq r(1+r) \right\} \subseteq \left\{ \sup_{j=1,\ldots,p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > (1-r)\lambda_n 3/4 \right\}.$$

To see this, suppose that there is an index $j = 1,\ldots, p$ s.t. $\mu_j/\sigma_j < -\lambda_n 3/4$ and $\hat{\mu}_j > 0$. Then, $|\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > \lambda_n(3/4) (\sigma_j/\hat{\sigma}_j)$. In turn, $\sup_{j=1,\ldots,p} \{ |1 - \hat{\sigma}_j/\sigma_j| \leq r/(1+r) \}$ implies that $|1 - \sigma_j/\hat{\sigma}_j| \leq r$ and so $(\sigma_j/\hat{\sigma}_j)\lambda_n 3/4 \geq (1-r)\lambda_n 3/4$. By combining these, we conclude that $\sup_{j=1,\ldots,p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > (1-r)\lambda_n 3/4$.

\[R_n = \alpha K n^{-\delta/2} M_{n,2+\delta}^2 (1 + \Phi^{-1}(1 - \alpha/(2k - p)))^{2+\delta} \leq \alpha^{2+\delta} K n^{-\delta/2} M_{n,2+\delta}^2 (1 + \Phi^{-1}(1 - \alpha/(2k - p)))^{2+\delta} \leq \alpha^{2+\delta} K n^{-\delta/2} M_{n,2+\delta}^2 + \alpha K (n^{-\delta/2} M_{n,2+\delta}^2 \ln((2k - p)/\alpha))^{2+\delta/2} = o(1), \]

where the first inequality uses the convexity of $x \mapsto x^{2+\delta}$, $\delta > 0$ to show $(1 + a)^{2+\delta} \leq 2^{1+\delta}(1 + a^{2+\delta})$ for any $a > 0$ by Jensen’s inequality. The second inequality follows from $1 - R(t) \leq \exp(-t^2/2)$ for any $t > 0$ and so $\Phi^{-1}(1 - \alpha/[2k - p]) \leq \sqrt{2 \ln((2k - p)/\alpha)}$, and the convergence to zero is based on $n^{-\delta/2} M_{n,2+\delta}^2 \ln((2k - p)/(2k - p))^{2+\delta/2} \rightarrow 0$ (by Assumption A.2) which for $2k - p > 1$ implies that $n^{-\delta/2} M_{n,2+\delta}^2 \rightarrow 0$.

\[\square \]

Proof of Theorem 4.1 of [MP]. This result follows from Lemma A.5 with $L = \{1, \ldots, p\}$.

Proof of Theorem 4.2 of [MP]. This proof is similar to the proof of Chernozhukov et al. (2014c, Theorem 4.2). Let us define the (sequence of) sets J_1 and J_2 as follows:

\[J_1 \equiv \{ j = 1, \ldots, p : \mu_j/\sigma_j \geq -\lambda_n 3/4 \}, \]

\[J_2 \equiv \{ j = 1, \ldots, p : \mu_j/\sigma_j < -\lambda_n 3/4 \}. \]

We divide the proof into three steps.

Step 1. We need that $\hat{\mu}_j \leq 0$ for all $j \in J_2^c$ with high probability, i.e., for any $c \in (0,1)$,
Based on this, consider the following derivation for any \(r \in (0, 1) \),

\[
P(\bigcup_{j \in J_r} \{ \hat{\mu}_j > 0 \}) = \left\{ \begin{array}{l}
P(\bigcup_{j \in J_r} \{ \hat{\mu}_j > 0 \} \cap \sup_{j=1, \ldots, p} |\hat{\sigma}_j/\sigma_j - 1| \leq r/(1 + r)) + \\
P(\bigcup_{j \in J_r} \{ \hat{\mu}_j > 0 \} \cap \sup_{j=1, \ldots, p} |\hat{\sigma}_j/\sigma_j - 1| > r/(1 + r)) \end{array} \right\}
\]

\[
\leq P \left(\sup_{j=1, \ldots, p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > (1-r)\lambda_n 3/4 \right) + P \left(\sup_{j=1, \ldots, p} |\hat{\sigma}_j/\sigma_j - 1| > r/(1 + r) \right).
\]

(A.9)

By evaluating this equation for \(r = r_n = (n^{-3/2}(\ln p) + n^{-3/2}(\ln p)^2)B_n^2 \rightarrow 0 \) (due to Assumption A.3) implies that:

\[
P(\bigcup_{j \in J_r} \{ \hat{\mu}_j > 0 \}) \leq 2p \exp(-2^{-1} n^{\delta/(2+\delta)}/M_{n,2+\delta}^2) [1 + K(M_{n,2+\delta}/n^{\delta/(2+\delta)}) + 1]^{2+\delta} + \tilde{K} n^{-c},
\]

where the first term is a consequence of Lemma A.2 and that \(r_n \rightarrow 0 \) and \((1 - r_n)\lambda_n 3/4 \geq n^{-1/2}(M_{n,2+\delta}^2 n^{\delta/(2+\delta)}) - n^{-1/2} \) for all \(n \) sufficiently large, and the second term is a consequence of Lemma A.3 and \(r_n/(1 + r_n) = [n^{-1} \ln p + n^{-3/2}(\ln p)^2]B_n^2 \rightarrow 0 \).

Step 2. We wish to show that \(J_1 \subseteq \hat{J}_L \) with high probability. To be precise, we show that

\[
P(J_1 \nsubset \hat{J}_L) \leq 2p \exp(-2^{-1} n^{\delta/(2+\delta)}/M_{n,2+\delta}^2) [1 + K(M_{n,2+\delta}/n^{\delta/(2+\delta)}) + 1]^{2+\delta} + \tilde{K} n^{-c},
\]

where \(K, \tilde{K} \) are uniform constants.

First, we show that for any \(r \in (0, 1) \),

\[
\left\{ J_1 \nsubset \hat{J}_L \right\} \cap \left\{ \sup_{j=1, \ldots, p} |\hat{\sigma}_j/\sigma_j - 1| \leq r/(1 + r) \right\} \subseteq \left\{ \sup_{j=1, \ldots, p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > \lambda_n (1 - r)3/4 \right\}
\]

To see this, consider the following argument. Suppose that \(j \in J_1 \) and \(j \nsubset \hat{J}_L \), i.e., \(\mu_j/\sigma_j \geq -\lambda_n 3/4 \) and \(\hat{\mu}_j/\hat{\sigma}_j < -\lambda_n \) or, equivalently by Eq. (A.8), \(\hat{\mu}_j/\hat{\sigma}_j < -\lambda_n 3/4 \). Then, \(|\mu_j - \hat{\mu}_j|/\hat{\sigma}_j > \lambda_n [\frac{3}{2} - \frac{3}{4}(\sigma_j/\hat{\sigma}_j)] \). In turn, sup\(j=1, \ldots, p \) \(|1 - \hat{\sigma}_j/\sigma_j| \leq r/(1 + r) \) implies that \(|\sigma_j/\hat{\sigma}_j - 1| \leq r \) and so \(\lambda_n [\frac{3}{2} - \frac{3}{4}(\sigma_j/\hat{\sigma}_j)] \geq \lambda_n (1 - r)3/4 \). By combining these, we conclude that \(\sup_{j=1, \ldots, p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > \lambda_n (1 - r)3/4 \), as desired.

Based on this, consider the following derivation for any \(r \in (0, 1) \),

\[
P(J_1 \nsubset \hat{J}_L)
\]

\[
= P \left(\left\{ J_1 \nsubset \hat{J}_L \right\} \cap \left\{ \sup_{j=1, \ldots, p} |\hat{\sigma}_j/\sigma_j - 1| \leq r/(1 + r) \right\} \right)
\]

\[
+ P \left(\left\{ J_1 \nsubset \hat{J}_L \right\} \cap \left\{ \sup_{j=1, \ldots, p} |\hat{\sigma}_j/\sigma_j - 1| > r/(1 + r) \right\} \right)
\]

\[
\leq P \left(\sup_{j=1, \ldots, p} |\hat{\mu}_j - \mu_j|/\hat{\sigma}_j > \lambda_n (1 - r)3/4 \right) + P \left(\sup_{j=1, \ldots, p} |\hat{\sigma}_j/\sigma_j - 1| > r/(1 + r) \right).
\]

43
We now complete the argument. Consider the following derivation:

\[
\mu_n \implies \tilde{m} \text{ manner required by the result.}
\]

where the third line uses Lemma A.5 and steps 1 and 2, and the convergence in the last line holds uniformly in the manner required by the result.

Step 3. We now complete the argument. Consider the following derivation:

\[
\{ (T_n > c_n^{SN,L}(\alpha)) \cap \{ J_I \subseteq J_L \cap \{ \cap_j \in J_I \{ \hat{\mu}_j \leq 0 \} \} \} \}
\]

\[
\subseteq \{ (T_n > c_n^{SN}(\alpha, |J_I|)) \cap \{ \cap_j \in J_I \{ \hat{\mu}_j \leq 0 \} \} \}
\]

\[
\subseteq \max \left\{ \max_{j \in J_I} \frac{\sqrt{\hat{\mu}_j}}{\sigma_j}, \max_{s=p+1, \ldots, k} \frac{\sqrt{\mu_j}}{\sigma_s} \right\} > c_n^{SN}(\alpha, |J_I|),
\]

where we have used \(c_n^{SN,L}(\alpha) = c_n^{SN}(\alpha, |J_L|) \), Lemma A.4 (in that \(c_n^{SN}(\alpha, d) \) is a non-negative increasing function of \(d \in \{0, 1, \ldots, 2k - p\} \)), and we take \(\max_{j \in J_I} \sqrt{\hat{\mu}_j}/\sigma_j = -\infty \) if \(J_I = \emptyset \). Thus,

\[
P(T_n > c_n^{SN,L}(\alpha))
\]

\[
= \left\{ P((T_n > c_n^{SN,L}(\alpha)) \cap \{ \{ J_I \subseteq J_L \cap \{ \cap_j \in J_I \{ \hat{\mu}_j \leq 0 \} \} \}) + P((T_n > c_n^{SN,L}(\alpha)) \cap \{ \{ J_I \not\subseteq J_L \cup \{ \cup_j \in J_I \{ \hat{\mu}_j \geq 0 \} \} \}) \right\}
\]

\[
\leq P \left(\max_{j \in J_I} \sqrt{\hat{\mu}_j}/\sigma_j, \max_{s=p+1, \ldots, k} \frac{\sqrt{\mu_j}}{\sigma_s} \right) > c_n^{SN}(\alpha, |J_I|) \right) + P(J_I \not\subseteq J_L) + P(\cup_j \in J_I \{ \hat{\mu}_j \geq 0 \})
\]

\[
\leq \alpha + \left\{ \frac{\alpha K n^{-\delta/2} M^{2+\delta}_n}{2} (1 + \Phi^{-1}(1 - \alpha/(2k - p)))^{2+\delta} + 4p \exp(-2^{-1} n^{-\delta/(2+\delta)} M^{2+\delta}_n) [1 + K (M_n^{2+\delta}/n^{\delta/(2(2+\delta))}) + 1]^{2+\delta} \right\} + 2\tilde{K} n^{-c}.
\]

(A.10)

where the third line uses Lemma A.5 and steps 1 and 2, and the convergence in the last line holds uniformly in the manner required by the result.

A.5 Results for the bootstrap approximation

Lemma A.6. Assume Assumptions A.1, A.4, and that \(H_0 \) holds. For any non-stochastic set \(L \subseteq \{1, \ldots, p\} \), define:

\[
T_n(L) = \max \left\{ \max_{j \in L} \frac{\sqrt{\mu_j}}{\sigma_j}, \max_{s=p+1, \ldots, k} \frac{\sqrt{\mu_j}}{\sigma_s} \right\}
\]

and let \(c_n^B(\alpha, L) \) denote the conditional \((1 - \alpha)\)-quantile based on the multiplier bootstrap (MB) or empirical bootstrap (EB), i.e., \(B \in \{MB, EB\} \). Then,

\[
P[T_n(L) > c_n^B(\alpha, L)] \leq \alpha + \tilde{C} n^{-c},
\]

where \(\tilde{c}, \tilde{C} > 0 \) are positive constants that only depend on the constants \(c, C \) in Assumption A.4. Furthermore, if \(\mu_j = 0 \) for all \(j \in L \) then:

\[
|P[T_n(L) > c_n^B(\alpha, L)] - \alpha| \leq \tilde{C} n^{-\delta}.
\]
Finally, since \(\hat{c}, \hat{C} \) depend only on the constants \(c, C \) in Assumption A.4, the proposed bounds are uniform in all parameters \(\theta \in \Theta \) and distributions \(P \) that satisfy the assumptions in the statement.

Proof. If there were no equalities, then the result would follow immediately from replacing \(\{1, \ldots, p\} \) with \(L \) in the proof of Theorem 4.3 in CCK14. To complete the proof, we need to show how to modify the argument in the presence of equalities. As we show next, this can be achieved by simply redefining the set of moment inequalities appropriately by adding the moment equalities as two sets of inequalities with reversed sign.

Define \(A \equiv L \cup \{p+1, \ldots, k\} \cup \{k+1, \ldots, 2k-p\} \) with \(|A| = |L| + 2(k-p) \) and for any \(i = 1, \ldots, n \), let

\[
X^E_i \equiv \{(X_{ij})'_{j \in L}, \{X_{is}\}'_{s = p+1, \ldots, k}, \{-X_{is}\}'_{s = p+1, \ldots, k}\}.
\]

be an \(|A| \)-dimensional auxiliary data vector. Based on this definition, we modify all expressions analogously, e.g.,

\[
\mu^E = \{(\mu_j)'_{j \in L}, \{\mu_s\}'_{s = p+1, \ldots, k}, \{-\mu_s\}'_{s = p+1, \ldots, k}\},
\]

\[
\sigma^E = \{(\sigma_j)'_{j \in L}, \{\sigma_s\}'_{s = p+1, \ldots, k}, \{-\sigma_s\}'_{s = p+1, \ldots, k}\},
\]

and notice that \(H_0 \) is equivalently re-written as \(\mu^E \leq 0_{|A|} \).

In the new notation, the test statistic is re-written as:

\[
T_n(L) = \max_{j \in A} \sqrt{n} \frac{\sqrt{n} \mu^E_j / \sigma^E_j},
\]

and the critical values can be re-written analogously. In particular, the multiplier bootstrap test statistic is:

\[
W^MB_n(L) = \max_{j \in A} \sqrt{n} \sum_{i=1}^{n} \epsilon_i (X^E_{ij} - \hat{\mu}_j^E) / \hat{\sigma}_j^E,
\]

and the empirical bootstrap test statistic is:

\[
W^EB_n(L) = \max_{j \in A} \sqrt{n} \sum_{i=1}^{n} (X_{ij}^* - \hat{\mu}_j^E) / \hat{\sigma}_j^E.
\]

Given this setup, the result follows immediately from Theorem 4.3 of CCK14.

Proof of Theorem 4.3 of [MP]. This result follows from Lemma A.6 with \(|L| = \{1, \ldots, p\} \).

Lemma A.7. For any \(\alpha \in (0, 0.5) \), \(n \in \mathbb{N} \), and non-stochastic sets \(L_1 \subseteq L_2 \subseteq \{1, \ldots, p\} \), let \(c^B_n(\alpha, L) \) denote the conditional \((1-\alpha) \)-quantile based on multiplier bootstrap (MB) or empirical bootstrap (EB), i.e., \(B \in \{MB, EB\} \).

Then,

\[
\frac{c^B_n(\alpha, L_1)}{c^B_n(\alpha, L_2)} \leq c^B_n(\alpha, L).
\]

Furthermore, for \(B \in \{MB, EB\} \) one has \(P \left(c^B_n(\alpha, L) \geq 0 \right) \geq 1 - Cn^{-c} \) for any \(L \subseteq \{1, \ldots, p\} \) where \(c, C \) are...
universal constants.

Proof. By definition, $L_1 \subseteq L_2$ implies that $W_n^B(L_1) \leq W_n^B(L_2)$ which, in turn, implies $c_n^B(\alpha, L_1) \leq c_n^B(\alpha, L_2)$.

Next, we prove $c_n^B(\alpha, L) \geq 0$ for any $L \subseteq \{1, \ldots, p\}$ for $B \in \{MB, EB\}$. When an equality constraint is present $W_n^B(L) \geq 0$ for $B \in \{MB, EB\}$ such that $c_n^B(\alpha, L) \geq 0$. Next, consider the case without equality constraints. For the multiplier bootstrap ($B = MB$) notice that conditional on the data $\{X^n\}$ it holds that $W_n^{MB}(L) = \max_{j \in L} (1/\sqrt{n}) \sum_{i=1}^n c_i (X_{ij} - \hat{\mu}_j)/\hat{\sigma}_j$ is a maximum of centered Gaussian random variables. Thus, as $\alpha \in (0, 0.5]$ we conclude that $c_n^{MB}(\alpha, L) \geq 0$ (for all values of $\{X^n\}$).

Now turn to the empirical bootstrap. Define $c_0(\alpha)$ as the $(1 - \alpha)$-quantile of $\max_{1 \leq j \leq p} Y_j$ where $(Y_1, \ldots, Y_p) \sim N(0, E[Z_1 Z_1^T])$. First, Chernozhukov et al. (2014c, Eq. (66)) implies that, for all $\gamma > 0$ and for all n can be chosen sufficiently large, $P(c_n^B(\alpha) \geq c_0(\alpha + \gamma)) \geq 1 - Cn^{-c}$ where c, C are universal constants (In particular, this holds for $B = EB$). Second, since $\alpha \in (0, 0.5)$, we can choose $\gamma > 0$ sufficiently small s.t. $\alpha + \gamma \leq 0.5$, which implies $c_0(\alpha + \gamma) \geq 0$. By combining these two, the desired result follows.

Proof of Theorem 4.4 of [MP]. This proof is similar to the proof of Chernozhukov et al. (2014c, Theorem 4.4). Let us define the (sequence of) sets J_t and J_t^i as follows:

$$J_t \equiv \{j = 1, \ldots, p : \mu_j/\sigma_j \geq -3\lambda_n/4\},$$

$$J_t^i \equiv \{j = 1, \ldots, p : \mu_j/\sigma_j < -3\lambda_n/4\}.$$

We divide the proof into three steps. Steps 1-2 are exactly as in the proof of Theorem 4.2 so they are omitted.

Step 3. We now want to complete the argument. First, note that Lemma A.7 implies that $c_n^B(\alpha, J_t) \leq c_n^B(\alpha, J_L)$ when $J_t \subseteq J_L$. Hence, defining $T_n(J_t) = \max\{\max_{j \in J_t} \sqrt{n} \hat{\mu}_j/\hat{\sigma}_j, \max_{s=p+1, \ldots, k} \sqrt{n} \hat{\mu}_s/\hat{\sigma}_s\}$, one has

$$\left\{T_n > c_n^B(\alpha, J_L)\right\} \cap \{J_t \subseteq J_L\} \cap \{\cap_{\gamma \in J_t^i} \{\hat{\mu}_j \leq 0\}\} \cap \{c_n^B(\alpha, J_t) \geq 0\}$$

$$\subseteq \left\{T_n > c_n^B(\alpha, J_t)\right\} \cap \{\cap_{\gamma \in J_t^i} \{\hat{\mu}_j \leq 0\}\} \cap \{c_n^B(\alpha, J_t) \geq 0\}$$

$$\subseteq \left\{T_n(J_t) > c_n^B(\alpha, J_t)\right\},$$

where $\max_{j \in J_t} \sqrt{n} \hat{\mu}_j/\hat{\sigma}_j = -\infty$ if $J_t = \emptyset$. Thus,
the result follows.

second inequality uses Eq. (4.9) of \[MP\] and Eq. (A.13). If we combine this result with Eqs. (4.9) of \[MP\] and (A.11),

where the convergence in the last line is uniform. The third line of Eq. (A.11) uses Lemmas A.6 and A.7 as well as steps 1 and 2.

We next turn to the second part of the result. Notice that \(\mu = 0\) implies that \(J_I = \{1, \ldots, p\}\) and so, by definition, \(\hat{J}_L \subseteq J_I = \{1, \ldots, p\}\). By combining this with step 2 of Theorem 4.2, we conclude that

\[
P[\hat{J}_L = J_I = \{1, \ldots, p\}] \geq 1 - R_n,
\]

where

\[
R_n = 2p \exp(-2^{-1}n^{\delta/(2+\delta)}/M^2_{n,2+\delta})[1 + K(M_{n,2+\delta}/n^{\delta/(2+\delta)}) + 1]^{2+\delta} + \tilde{K}n^{-\epsilon}
\]

and \(K, \tilde{K}\) are uniform constants. Thus, \(P[\hat{J}_L = J_I = \{1, \ldots, p\}] = 1 + o(1)\), uniformly. In turn, notice that \(\{\hat{J}_L = J_I = \{1, \ldots, p\}\}\) implies that \(c_n^{B,1S}(\alpha) = c_n^{B}(\alpha, J_I) = c_n^{B}(\alpha, \hat{J}_L)\). Thus,

\[
P(T_n > c_n^{B}(\alpha))
\]

where, in the last line, the first inequality uses the second result in Theorem 4.3 of \[MP\] and Eq. (A.12), and the second inequality uses Eq. (4.9) of \[MP\] and Eq. (A.13). If we combine this result with Eqs. (4.9) of \[MP\] and (A.11), the result follows. \(\square\)
A.6 Results for power comparison

Proof of Theorem 5.1 of [MP]. The fact that Eq. (5.3) of [MP] implies Eq. (5.2) of [MP] follows from the arguments in the main text. To complete the proof, it suffices to show that any of the two conditions imply Eq. (5.3) of [MP].

By definition,

\[\hat{J}_{SN} = \{ j = 1, \ldots, p : \hat{\mu}_j / \hat{\sigma}_j \geq -2c_n^{S.N.1S}(\beta_n) / \sqrt{n} \}, \]

\[\hat{J}_L = \{ j = 1, \ldots, p : \hat{\mu}_j, l / \hat{\sigma}_j \geq -\lambda_n \} = \{ j = 1, \ldots, p : \hat{\mu}_j / \hat{\sigma}_j \geq -\lambda_n 3 / 2 \}, \]

where the second expression of \(\hat{J}_L \) follows from Lemma 3.2 of [MP].

Condition 1. We show this by contradiction, i.e., suppose that Eq. (5.4) of [MP] and \(\hat{J}_L \not\subseteq \hat{J}_{SN} \) hold. By the latter, \(\exists j = 1, \ldots, p \) s.t. \(j \in \hat{J}_L \cap \hat{J}_{SN} \), i.e., -2c_n^{S.N.1S}(\beta_n) / \sqrt{n} > \hat{\mu}_j / \hat{\sigma}_j \geq -\lambda_n 3 / 2 \), which implies that \(c_n^{S.N.1S}(\beta_n) 4 / 3 < \sqrt{n} \lambda_n \), which directly contradicts Eq. (5.4) of [MP].

Condition 2. By definition, \(c_n^{S.N.1S}(\beta_n) 4 / 3 \geq \sqrt{n} \lambda_n \) is equivalent to

\[[\Phi^{-1}(1 - \beta_n / p)]^2 \geq n \lambda_n^2 9 / 16. \] (A.15)

The remainder of the proof shows that Eq. (A.15) holds under the conditions of the result.

First, we establish a lower bound for the LHS of Eq. (A.15). For any \(x \geq 1 \), consider the following inequalities:

\[1 - \Phi(x) \geq \frac{1}{x + 1 / x} \frac{1}{\sqrt{2 \pi}} e^{-x^2 / 2} \geq \frac{1}{2x \sqrt{2 \pi}} e^{-x^2 / 2} \geq \frac{1}{2 \sqrt{2 \pi}} e^{-x^2}, \]

where the first inequality holds for all \(x > 0 \) by Gordon (1941, Eq. (10)), the second inequality holds by \(x \geq 1 \) and so \(x \geq 1 / x \), and the third inequality holds by \(e^{-x^2 / 2} \leq 1 / x \) for all \(x > 0 \). Note that for \(\beta_n \leq 10\% \) and \(p \geq 1 \), \(\Phi^{-1}(1 - \beta_n / p) \geq 1 \). Evaluating the previous display at \(x = \Phi^{-1}(1 - \beta_n / p) \) and some algebra yields:

\[[\Phi^{-1}(1 - \beta_n / p)]^2 \geq \text{ln} \left(\frac{p}{2 \sqrt{2 \pi} \beta_n} \right). \] (A.16)

Second, we establish an upper bound for the RHS of Eq. (A.15). By Eq. (3.4) of [MP],

\[n \lambda_n^2 = (4/3 + \varepsilon)^2 \frac{n}{n^{2/(2+\delta)} M_{n,2+\delta}^2 - 1} \leq (4/3 + \varepsilon)^2 n^{2/(2+\delta)} M_{n,2+\delta}^{-2} = 2(4/3 + \varepsilon)^2 n^{2/(2+\delta)} M_{n,2+\delta}^{-2}, \] (A.17)

where the last inequality used that \(1/(x - 1) \leq 2 / x \) for \(x \geq 2 \) and that \(n^{2/(2+\delta)} M_{n,2+\delta}^2 \geq 2 \). Thus,

\[\frac{9}{16} n \lambda_n^2 \leq \frac{18}{16} (4/3 + \varepsilon)^2 n^{2/(2+\delta)} M_{n,2+\delta}^{-2} = \frac{9}{8} (4/3 + \varepsilon)^2 n^{2/(2+\delta)} M_{n,2+\delta}^{-2}. \] (A.18)

To conclude the proof, notice that Eq. (A.15) follows directly from combining Eqs. (5.5) of [MP], (A.16), and (A.18).
Proof of Theorem 5.2 of [MP]. This result has several parts.

Part 1: The fact that Eq. (5.6) of [MP] implies Eq. (5.7) of [MP] follows from the same arguments as in the SN method.

Part 2: By definition,

\[
\hat{J}^B = \{ j = 1, \ldots, p : \hat{\mu}_j / \hat{\sigma}_j \geq -2c_n^B(\beta_n) / \sqrt{n} \},
\]

\[
\hat{J}^L = \{ j = 1, \ldots, p : \hat{\mu}_{j,L} / \hat{\sigma}_j \geq -\lambda_n \} = \{ j = 1, \ldots, p : \hat{\mu}_j / \hat{\sigma}_j \geq -\lambda_n 3/2 \},
\]

where the second expression of \(\hat{J}^L \) follows from Lemma 3.2.

Suppose that \(\hat{J}^L \subseteq \hat{J}^B \) does not occur, i.e., \(\exists j \in \hat{J}^L \cap \hat{J}^c_B \), i.e.,

\[-2c_n^B(\beta_n) / \sqrt{n} > \hat{\mu}_j / \hat{\sigma}_j \geq -\lambda_n 3/2.\]

From this, it follows that:

\[\{ c_n^B(\beta_n)4/3 \geq \lambda_n \sqrt{n} \} \implies \{ \hat{J}^L \subseteq \hat{J}^B \}.\]

Let \(c_0(3\beta_n) \) denote the \((1 - 3\beta_n)\)-quantile of \(\max_{1 \leq j \leq p} Y_j \) with \((Y_1, \ldots, Y_p) \sim N(0, E[ZZ']) \) with \(Z \) as in Assumption A.3. In the remainder of this step, we consider two strategies to establish the following result:

\[c_0(3\beta_n)4/3 \geq \sqrt{n}\lambda_n.\] \(\text{(A.19)}\)

Once Eq. (A.19) occurs, we can conclude that:

\[\{ c_n^B(\beta_n)4/3 \geq \lambda_n \sqrt{n} \} \implies \{ \hat{J}^L \subseteq \hat{J}^B \}.\]

From this and since \(c_0(\cdot) \) is decreasing, we conclude that:

\[P[\hat{J}^L \subseteq \hat{J}^B] \geq P[c_n^B(\beta_n)4/3 \geq \lambda_n \sqrt{n}] \implies \{ \hat{J}^L \subseteq \hat{J}^B \}.\] \(\text{(A.20)}\)

for any \(\mu_n \leq 3\beta_n \).

To complete the proof, it suffices to show that the expression on the RHS exceeds \(1 - \hat{C}n^{-\beta} \) for some \(\hat{C}, \hat{\beta} > 0 \) and a suitable choice of \(\mu_n \). We achieve this by evaluating Chernozhukov et al. (2014c, Eq. (66)) at the following values:

\[\alpha = \beta_n, \nu_n = Cn^{-\beta}, \text{ and } \zeta_2, \zeta_1 \text{ s.t. } \zeta_2 + 8\zeta_1 \sqrt{\ln p} \leq Cn^{-\beta} \text{ (see step 3 in their proof of Theorem 4.3). Under our assumptions and } \beta_n \geq Cn^{-\beta}, \text{ these choices can be shown to yield } \mu_n \equiv \beta_n + \zeta_2 + \nu_n + 8\zeta_1 \sqrt{\ln p} \leq \beta_n + 2Cn^{-\beta} \leq 3\beta_n, \text{ as desired. By Chernozhukov et al. (2014c, Eq. (66)), the RHS of Eq. (A.20) exceeds } 1 - Cn^{-\beta}, \text{ as desired.}

To complete the proof the step, we now describe the two strategies that can be used to show Eq. (A.19). The first strategy relies on Eq. (5.9) of [MP] and the second strategy relies on Eq. (5.10) of [MP].
Strategy 1. By definition,

\[c_0(3\beta_n) \geq \Phi^{-1}(1 - 3\beta_n), \]

(A.21)

where \(\Phi^{-1}(1 - 3\beta_n) \) denotes the \((1 - 3\beta_n)\)-quantile of \(N(0,1) \). By combining Eqs. (A.21), (5.9) of [MP], and (A.17), it follows that:

\[c_0(3\beta_n)4/3 \geq \Phi^{-1}(1 - 3\beta_n)4/3 \geq \sqrt{2} (4/3 + \varepsilon)n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1} \geq \sqrt{n}\lambda_n, \]

as desired.

Strategy 2. First, by the Borell-Cirelson-Sudakov inequality (see, e.g. Boucheron et al. (2013, Theorem 5.8)),

\[P[\max_{1 \leq j \leq p} Y_j \leq E[\max_{1 \leq j \leq p} Y_j] - x] \leq e^{-x^2/2}, x \geq 0, \]

where we used that the diagonal \(E[ZZ'] \) is a vector of ones. Equating the RHS of this to \((1 - 3\beta_n)\) yields \(x = \sqrt{2 \log(1/[1 - 3\beta_n])} \) such that

\[c_0(3\beta_n) \geq E[\max_{1 \leq j \leq p} Y_j] - \sqrt{2 \log(1/[1 - 3\beta_n])}. \]

(A.22)

We now provide a lower bound for the first term on the RHS. Consider the following derivation:

\[2E[\max_{1 \leq j \leq p} Y_j] \geq \min_{i \neq j} \sqrt{E(Y_i - Y_j)^2 \log(p)} \geq \sqrt{2(1 - \rho) \log(p)}, \]

(A.23)

where the first line follows from Sudakov’s minorization inequality (see, e.g., Boucheron et al. (2013, Theorem 13.4)) and the second line follows from \(E[ZZ'] \) having a diagonal elements equal to one and the maximal correlation bounded above by \(\rho \). Eqs. (A.22)-(A.23) imply that:

\[c_0(3\beta_n) \geq \sqrt{(1 - \rho) \log(p)/2} - \sqrt{2 \log(1/[1 - 3\beta_n])}. \]

(A.24)

By combining Eqs. (A.24), (5.10) of [MP], and (A.17), it follows that:

\[c_0(3\beta_n)4/3 \geq 4/3(\sqrt{(1 - \rho) \log(p)/2} - \sqrt{2 \log(1/[1 - 3\beta_n])}) \]

\[\geq \sqrt{2} (4/3 + \varepsilon)n^{\delta/(2(2+\delta))} M_{n,2+\delta}^{-1} \geq \sqrt{n}\lambda_n, \]

as desired.

Part 3: Consider the following argument.

\[P[T_n \geq c_n^{B,2S}(\alpha)] = P[T_n \geq c_n^{B,2S}(\alpha) \cap \hat{J}_L \subseteq \hat{J}_B] + P[T_n \geq c_n^{B,2S}(\alpha) \cap \hat{J}_L \not\subseteq \hat{J}_B] \]

\[\leq P[T_n \geq c_n^{B,L}(\alpha)] + P[\hat{J}_L \not\subseteq \hat{J}_B] \]

\[\leq P[T_n \geq c_n^{B,L}(\alpha)] + Cn^{-c}, \]
where the second line uses the part 1, and the third line uses that the sufficient conditions imply Eq. (5.8) of [MP]. □
References

Andrews, D. W. K., S. Berry, and P. Jia-Barwick (2004): “Confidence Regions for Parameters in Discrete Games with Multiple Equilibria with an Application to Discount Chain Store Location,” Mimeo: Yale University and M.I.T.

2015-56: Andreas Basse-O’Connor, Raphaël Lachièze-Rey and Mark Podolskij: Limit theorems for stationary increments Lévy driven moving averages

2015-57: Andreas Basse-O’Connor and Mark Podolskij: On critical cases in limit theory for stationary increments Lévy driven moving averages

2015-58: Yunus Emre Ergemen, Niels Haldrup and Carlos Vladimir Rodríguez-Caballero: Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads

2015-60: Mark Podolskij, Bezirgen Veliyev and Nakahiro Yoshida: Edgeworth expansion for the pre-averaging estimator

2016-01: Matei Demetrescu, Christoph Hanck and Robinson Kruse: Fixed-b Inference in the Presence of Time-Varying Volatility

2016-02: Yunus Emre Ergemen: System Estimation of Panel Data Models under Long-Range Dependence

2016-03: Bent Jesper Christensen and Rasmus T. Varneskov: Dynamic Global Currency Hedging

2016-04: Markku Lanne and Jani Luoto: Data-Driven Inference on Sign Restrictions in Bayesian Structural Vector Autoregression

2016-05: Yunus Emre Ergemen: Generalized Efficient Inference on Factor Models with Long-Range Dependence

2016-06: Girum D. Abate and Luc Anselin: House price fluctuations and the business cycle dynamics

2016-07: Gustavo Fruet Dias, Cristina M. Scherrer and Fotis Papailias: Volatility Discovery

2016-08: N. Haldrup, O. Knapik and T. Proietti: A generalized exponential time series regression model for electricity prices

2016-09: Ole E. Barndorff-Nielsen: Assessing Gamma kernels and BSS/LSS processes

2016-10: Tim Bollerslev, Andrew J. Patton and Rogier Quaedvlieg: Modeling and Forecasting (Un)Reliable Realized Covariances for More Reliable Financial Decisions

2016-11: Tom Engsted and Thomas Q. Pedersen: The predictive power of dividend yields for future inflation: Money illusion or rational causes?

2016-12: Federico A. Bugni, Mehmet Caner, Anders Bredahl Kock and Soumendra Lahiri: Inference in partially identified models with many moment inequalities using Lasso