In situ lactate dehydrogenase activity—a novel renal cortical imaging biomarker of tubular injury?

Per Mose Nielsen1, Christoffer Laustsen1, Lotte Bonde Bertelsen1, Haiyun Qi2, Emmeli F. Mikkelsen1, Marie Louise Vinnad Kristensen1, Rikke Nørregaard2* and Hans Stødkilde-Jørgensen3*

1. MR Research Centre, Aarhus University, Aarhus, Denmark
2. Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
3. *Shared senior authorship

ABSTRACT: Renal ischemia/reperfusion injury (IRI) is the leading cause of acute kidney injury (AKI) in several disease states. Imbalance in energy metabolism and mitochondrial function is a hallmark in IRI which can be caused by mechanisms like oxidative stress, apoptosis and inflammation. Lactate dehydrogenase (LDH) activity has previously been suggested as a renal tubular injury marker. By the use of a hyperpolarized [1-13C]pyruvate magnetic resonance imaging (MRI) approach to monitor metabolic changes, we here investigate LDH activity, renal metabolism and cortical injury after IRI. This procedure gives a novel non-invasive method for investigation renal tissue injury in concern with IRI.

Purpose: Hyperpolarized [1-13C]pyruvate allows for dynamic measurements of energy metabolism and quantification of lactate to pyruvate conversion catalyzed by LDH in situ. This method provides an improved signal to noise ratio of more than 10,000 fold compared to classic MR spectroscopy. We therefore wish to not invasively measure single kidney energy metabolism and cortical injury.

PROCEDURE: The experimental protocol was performed according the scheme below.

HYPERPOLARIZATION Temperature, arterial oxygen saturation and respiration rate were monitored throughout the experiment.

- [1-13C]-pyruvate was polarized in a GE healthcare Spinlab.
- Each animal was injected with 1.5 ml hyperpolarized [1-13C]-pyruvate, through a tail vein catheter.
- MR scans were performed in a 3 T clinical MR system.

SUMMARY

- A reduced metabolite/pyruvate ratio is observed (fig 1 and 2).
- This activity reduction is caused by cellular injury (fig 3) leading to membrane disruption and loss of enzymes.
- Released LDH is observed in the urine and plasma (fig 4).
- Metabolic alterations were observed (fig. 5). Lactate/pyruvate ratio representing the ratio between anaerobic and aerobic respiration. This was supported by elevated LDH mRNA expression together with a reduced NAD+/NADH ratio (fig. 5).
- No metabolic alteration was seen in the contralateral (CL) kidney.
- Alanine/pyruvate and bicarbonate/pyruvate ratios experience reductions lower than lactate/pyruvate as these pathways are not upregulated (fig. x).

CONCLUSION:

- Reduced metabolite/pyruvate ratio was associated with renal injury in the post-ischemic kidney.
- An upregulation of the anaerobic pathway was observed by an elevated lactate/pyruvate ratio, elevated mRNA expression of LDH and reduced NAD+/NADH ratio.
- No metabolic alterations was observed in the contralateral kidney.

REFERENCES (fig 1, 2, 3, 4, 5)

- A reduced metabolite/pyruvate ratio is observed (fig 1 and 2).
- This activity reduction is caused by cellular injury (fig 3) leading to membrane disruption and loss of enzymes.
- Released LDH is observed in the urine and plasma (fig 4).
- Metabolic alterations were observed (fig. 5). Lactate/bicarbonate ratio representing the ratio between anaerobic and aerobic respiration. This was supported by elevated LDH mRNA expression together with a reduced NAD+/NADH ratio (fig. 5).
- No metabolic alteration was seen in the contralateral (CL) kidney.
- Alanine/pyruvate and bicarbonate/pyruvate ratios experience reductions lower than lactate/pyruvate as these pathways are not upregulated (fig. x).

*Shared senior authorship

Contact: Per Mose Nielsen, Aarhus University, Permose@clin.au.dk

1. MR Research Centre, Aarhus University, Aarhus, Denmark
2. Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

SUMMARY

- A reduced metabolite/pyruvate ratio is observed (fig 1 and 2).
- This activity reduction is caused by cellular injury (fig 3) leading to membrane disruption and loss of enzymes.
- Released LDH is observed in the urine and plasma (fig 4).
- Metabolic alterations were observed (fig. 5). Lactate/bicarbonate ratio representing the ratio between anaerobic and aerobic respiration. This was supported by elevated LDH mRNA expression together with a reduced NAD+/NADH ratio (fig. 5).
- No metabolic alteration was seen in the contralateral (CL) kidney.
- Alanine/pyruvate and bicarbonate/pyruvate ratios experience reductions lower than lactate/pyruvate as these pathways are not upregulated (fig. x).

CONCLUSION:

- Reduced metabolite/pyruvate ratio was associated with renal injury in the post-ischemic kidney.
- An upregulation of the anaerobic pathway was observed by an elevated lactate/bicarbonate ratio, elevated mRNA expression of LDH and reduced NAD+/NADH ratio.
- No metabolic alterations was observed in the contralateral kidney.

REFERENCES (fig 1, 2, 3, 4, 5)

- A reduced metabolite/pyruvate ratio is observed (fig 1 and 2).
- This activity reduction is caused by cellular injury (fig 3) leading to membrane disruption and loss of enzymes.
- Released LDH is observed in the urine and plasma (fig 4).
- Metabolic alterations were observed (fig. 5). Lactate/bicarbonate ratio representing the ratio between anaerobic and aerobic respiration. This was supported by elevated LDH mRNA expression together with a reduced NAD+/NADH ratio (fig. 5).
- No metabolic alteration was seen in the contralateral (CL) kidney.
- Alanine/pyruvate and bicarbonate/pyruvate ratios experience reductions lower than lactate/pyruvate as these pathways are not upregulated (fig. x).