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Summary

Below we provide a short summary of each chapter in the thesis.

In Chapter 1, we develop some simple simulation algorithms for CIR and

Wishart processes, the main idea being to split the corresponding infinitesimal

generator and thus reduce the problem to the simulation of the square of a matrix

valued Ornstein-Uhlenbeck process to be added to a deterministic process. In this

way, we provide a weak second order scheme requiring only the simulation of i.i.d.

Gaussian r.v.’s and simple matrix manipulations. The procedure is therefore really

easy to implement and it also presents good performance. However, convergence

results are provided only under some restrictions on the parameters.

This chapter is based on the paper ”Simple Simulation schemes for CIR and

Wishart processes” published on the International Journal of Theoretical and Ap-

plied Finance.

In Chapter 2, we study the impact of jumps distributions on the implied

volatility skew from realized variance options and VIX options. We consider a gen-

eralization of the Heston model allowing for jumps in the instantaneous variance

dynamics, also called SVJ-v model, which encompasses non Gaussian Ornstein

Uhlenbeck type processes (Barndorff-Nielsen and Shepard [14]). Under this frame-

work we show that by selecting alternative jump distributions, one can obtain

significantly different shapes of the implied volatility of variance, some clearly at

odds with the upward-sloping volatility skew observed in variance markets.

In Chapter 3, we recapitulate some of the most popular algorithms for the

inversion of Laplace transform and we analyse how they perform when applied to

the computation of prices of realized variance options, under the SVJ-v model with
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Inverse Gamma jump-sizes. In particular, we show how different formulations of

the Laplace transform can lead to numerically different prices. Therefore, careful

attention must be paid when applying this pricing method.

In Chapter 4, we generalize the MVMD model suggested in Brigo et al. [28] by

introducing shifted dynamics. In this framework, we propose a definition of implied

correlation and we investigate whether the model is able to consistently reproduce

the implied volatility of cross rates, once the single components are calibrated to

univariate shifted lognormal mixture dynamics models. In other words, we study

whether the shifted MVMD model is able to consistently reproduce triangular

relationships among FX cross rates. Finally, we introduce a shifted model with

uncertain volatilities and correlation which features greater flexibility and allow to

capture the correlation skew better. The Markovian projection of this model is a

generalization of the shifted MVMD model.
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Dansk Resumé

Nedenfor giver vi et kort resumé af hvert kapitel i afhandlingen.

I kapitel 1 udvikler vi nogle simple simulationsalgoritmer til CIR og Wishart

processer, hvor den fundamentale idé er at splitte generatoren og derved reducere

problemet til simuleringen af kvadratet af en matrix Ornstein-Uhlenbeck process,

som adderes med en deterministisk process. P̊a denne måde fremsætter vi en weak

second order algoritme, som kun kræver simulering af i.i.d. Gaussiske s.v.’s og

nemme matrix operationer. Derfor er proceduren meget nem at implementeres og

virker godt. Dog er konvergensresultater kun givet under nogle restriktioner p̊a

parametrene.

Dette kapitel er baseret p̊a forskningsartiklen ”Simple Simulation schemes for

CIR and Wishart processes” publiceret i International Journal of Theoretical and

Applied Finance.

I kapitel 2 undersøger vi effekten af springfordelingen p̊a det implicitte volatili-

tetssmil for realiseret variansoptioner og VIX optioner. Vi anvender en generalis-

ering af Heston (1993) modellen kaldet SVJ-v modellen, som tillader springene i

variansen og omfatter ikke-Gaussiske Ornstein Uhlenbeck procestyper (Barndorff-

Nielsen and Shepard [14]). Under denne modelstruktur viser vi at forskellige spring-

fordelinger kan føre til fundamentalt forskellige former af implicit volatilitet, hvoraf

nogle er tydeligt inkonsistente med den positive hældning p̊a volatilitetssmilet, som

man observerer i variansmarkeder.

I kapitel 3 opsummerer vi nogle af de mest populære algoritmer for inversionen

af Laplace transformation og vi undersøger præstationen af algoritmerne, n̊ar de

anvendes til udregning af priser p̊a realiseret variansoptioner, under SVJ-v mod-
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ellen med Inverse Gamma springstørrelser. I særdeleshed viser vi at ækvivalente

formuleringer af Laplace transformationen kan føre til numerisk forskellige priser.

Derfor er opmærksomhed nødvendigt, n̊ar man anvender den prissætningsmeto-

den.

I kapitel 4 generaliser vi MVMD modellen foresl̊aet i Brigo et al. [28] ved at

introducere forskudte dynamikker. Under denne model foresl̊ar vi en definition p̊a

implicit korrelation og vi undersøger om modellen kan reproducere den implicitte

volatilitet p̊a cross rater p̊a en konsistent måde, n̊ar de enkelte komponenter er kali-

breret til univariate forskudte lognormale mixture dynamik modeller. Med andre

ord undersøger vi om den forskudt MVMD model kan reproducere de triangulære

forbindelser mellem FX cross rater. Endelig introducerer vi en forskudt model med

usikre volatiliteter og usikker korrelation, som medfører øget fleksibilitet og repro-

ducerer bedre korrelationens skævhed. Markoviansk projektionen af modellen er

en generalisering af den forskudt MVMD model.
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Introduction

After the financial crisis in 2008 and the following economic developments, the need

for reliable financial models has notably increased, especially for portfolio and risk

management purposes. In addition to reflect features of true market prices, finan-

cial models should also enjoy some property of analytical tractability. In particular,

prices of common derivatives such as call and put options should be computable,

at least numerically. Reliability of numerical pricing methods is also extremely

important, in particular when calibrating a model, that is when looking for the

parameters in the model which better reproduce true market prices.

This introduction is meant to provide a brief but concise description on a

few basic concepts for a better understanding of the thesis. Definitions of implied

volatility and implied correlation will be briefly described below.

Volatility and Correlation

At the beginning of the seventies the introduction of futures contracts in financial

markets called for the construction of adequate models for the description of the

evolution of financial assets (stocks, bonds, etc.). The first very simple but enlight-

ening model was introduced by F. Black and M. Scholes [22] in 1973. Under this

model, the price of the underlying asset St is solution of the SDE

dS(t)

S(t)
= rdt+ σdWt

where Wt is a Brownian motion (which may be considered as the source of

uncertainty of St), r ≥ 0 is the instantaneous interest rate and σ ≥ 0 represents

the volatility. The latter gives a measure of the variation (oscillations) of the price

St over time. This dynamics allows for an explicit formulation for the computation
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of European call and put option prices. A call option is a financial contract between

two parties, giving the buyer the right, but not the obligation, to buy an agreed

quantity of a particular commodity or financial instrument (the underlying) from

the seller of the option, at a certain time (the expiration date or maturity of the

option) and for a prefixed price (the strike price). On the other hand, a put option

gives the buyer the right to sell the underlying to the seller of the option, at the

prefixed maturity and for a certain strike price.

Due to the availability of closed-form formulae for these types of contracts, the

Black and Scholes model gained great popularity. However, when comparing prices

under this model with real market prices, it is observed that the volatility σ is not

a constant, but depends on both the maturity of the option and the strike price.

The curve K → σ(T,K) is called implied volatility (Björk [21], Hull [78]).

Failure of the constant volatility assumption indicates some inadequacy of

the Black and Scholes model. In the attempt to amend the Black and Scholes

model, different suggestions have been made and nowadays modelling of the im-

plied volatility has become an active area of research. Among the various proposed

models, we distinguish stochastic volatility models where the volatility is modelled

as a stochastic process and local volatility models where the volatility is defined as

a deterministic function of the time and the underlying. We refer to Gatheral [62]

for an overview on the topic. Recently, stochastic local volatility models combining

features of both, have also been introduced (Alexander and Nogueira [7]).

Together with a good understanding of the dynamics of single assets, it is

also important to adequately model the joint dynamics of multiple assets. Indeed,

multi-assets options whose value depend on more than one asset are also available

in financial markets. These are popular for example for portfolio diversification

purposes, as investments in many assets can potentially reduce risk, with respect

to the case where one single asset is hold.

Let us consider two assets (S1, S2). A simple attempt in order to describe

the joint dynamics of (S1, S2) could be to consider a bi-dimensional Black and

Scholes model, where the relationship between changes in the two assets is modelled
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through a correlation parameter ρ between the corresponding Brownian motions

dS1(t)

S1(t)
= rdt+ σ1dW1(t)

dS2(t)

S2(t)
= rdt+ σ2dW2(t)

d〈W1,W2〉 = ρdt.

However, as for the volatility σ, also the correlation ρ(T,K) shows some depen-

dence on both the maturity and the strike price. The curve K → ρ(T,K) is called

implied correlation (see e.g. Austing [10]).

In order to better describe the joint dynamics of groups of assets and to re-

produce the fact that correlation is random rather than a constant parameter,

multidimensional stochastic and local volatility/correlation models have been pro-

posed (Da Fonseca et al. [46], Langnau [87]).

Motivation and structure of the thesis

This thesis comprises four self-contained chapters. The aim is the analysis, both

from a theoretical and a numerical perspective, of some financial models with

attention to the implied volatility/implied correlation curve they reproduce.

We start with Chapter 1, which is based on the paper ”Simple Simulation

schemes for CIR and Wishart processes”. Here we focus on the numerical simula-

tion of the square root or CIR process and of the Wishart process, generalization

of the CIR to the multidimensional framework. Both processes have many possible

applications in finance, among others as instantaneous volatility in the benchmark

Heston [77] stochastic volatility model and as variance-covariance matrix of a group

of assets in the WASC model (Da Fonseca et al. [46]). The Wishart process can

also be used to include more factors into the volatility of one single asset, as in

the WMSV model of Da Fonseca et al. [47]. Our simulation scheme has therefore

many possible applications e.g., for pricing under stochastic volatility/stochastic

correlation models. Other applications include interest rate models, as in Cox et

al. [43] and Gnoatto [68].

In the first Chapter of the thesis, we focus on the analysis of the Heston model

and the Wishart model, mainly from a simulation point of view. On the other hand,
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it is also interesting and useful to check whether a model is theoretically able to

reproduce some features of financial market data, such as the implied volatility

curve, before actually using it in practice.

This is the aim of the paper ”The impact of jump distributions on the implied

volatility of variance” (Chapter 2). Here, we consider a class of models which

extend the Heston stochastic volatility model by including jumps into the dynamics

of the instantaneous variance and we analyze the asymptotic behaviour of the

implied volatility from realized variance options and VIX options. Specifically, we

provide some mathematical conditions relating the distribution of the jumps with

the wings of the implied volatility of variance. Besides showing theoretical results,

we also provide numerical illustrations, both in the case of realized variance options

and VIX options. In particular, in order to compute prices of call options on the

realized variance, we adopt the approach in Carr et al. [34]. According to this

procedure, the Laplace transform of the call-price function can be expressed in

terms of the Laplace transform of the realized variance itself. As a consequence,

whenever an explicit expression for the Laplace transform of the realized variance

is available, call prices can be recovered by Laplace inversion techniques. While

this approach seems to be effective and easy to implement from a theoretical point

of view, numerical difficulties may appear when actually implementing the code,

for example in Matlab. Indeed, this is what we experienced when providing the

numerical illustrations for Chapter 2.

In the paper ”Pricing Realized Variance Options using Laplace transforms: a

comparison of inversion methods” (Chapter 3) we illustrate some of these issues

when considering the Heston model augmented with Inverse Gamma jumps in the

instantaneous variance.

Finally, Chapter 4 is based on the paper ”The MVMD model: shifted dynamics

and correlation skew”, which I started during my staying abroad at Imperial Col-

lege, in London. Here we move from stochastic volatility models and applications

to volatility derivatives to consider a multidimensional local volatility/local corre-

lation model denominated MVMD model, of which we investigate some uses in the

FX market. This model was introduced in Brigo et al. [28] as a multidimensional

extension of the LMD model in in Brigo and Mercurio, [24] and [25]. In this thesis,

we generalize it by introducing shifted dynamics, which allow to better reproduce

the implied volatility curve of the single assets. We analyze the implied correlation

xiv



under this model, focussing on triangular relationships among FX exchange rates.

Finally, we propose a shifted model with uncertain volatility and correlation which

reproduces the correlation skew better.
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Chapter 1

Simple Simulation schemes for

CIR and Wishart processes
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Simple Simulation schemes for CIR and

Wishart processes 1

Paolo Baldi Camilla Pisani
Dept. of Mathematics,

Tor Vergata University,
Rome

Dept. of Economics and
Business Economics,

Aarhus University

Abstract

We develop some simple simulation algorithms for CIR and Wishart

processes. We investigate rigorously the square of a matrix valued Ornstein-

Uhlenbeck process, the main idea being to split the generator and to reduce

the problem to the simulation of the square of a matrix valued Ornstein-

Uhlenbeck process to be added to a deterministic process. In this way we

provide a weak second order scheme that requires only the simulation of

i.i.d. Gaussian r.v.’s and simple matrix manipulations.

1.1 Introduction

This paper introduces some simple algorithms to simulate a Wishart process. They

work only under some assumptions on the parameters, but they are quite simple

to implement and work well. The Wishart process was introduced in Bru [32] as

the matrix valued process that is the solution of

Xx
t = x+ αIdt+

∫ t

0

(√
Xx
s dWs + dW T

s

√
Xx
s

)
(1.1)

1Original article published as IJTAF,16,8,2013,15 Pages DOI:10.1142/S0219024913500453
c© World Scientific Publishing Company, http://www.worldscientific.com/worldscinet/ijtaf
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where (Wt)t≥0 denotes a d × d square matrix of independent standard Brownian

motions, α ∈ R+ and x is symmetric positive semidefinite. We shall consider under

the name of Wishart the following more general process

Xx
t = x+

∫ t

0

(α aTa+ bXx
s +Xx

s b
T )ds+

∫ t

0

√
Xx
s dWsa+ aTdW T

s

√
Xx
s (1.2)

where (Wt)t≥0, α, a and x are as above and b is another d × d matrix. Under

the assumption α ≥ d − 1, that we will assume hereafter, existence of a unique

weak solution of the previous equation has been proved (see Bru [33], Cuchiero,

Filipović, Mayerhofer and Teichmann [45] e.g.). We shall denote Wd(x, α, b, a; t)

the solution of (1.2). This process is the natural multidimensional generalization

of the one-dimensional CIR process, i.e. the solution of

dXt = (a− κXt)dt+ σ
√
XtdBt (1.3)

with x0, σ, a ≥ 0, κ ∈ R, (Bt)t being a standard Brownian motion.

The Wishart process has appeared recently in stochastic volatility models in

finance as in Gourieroux and Sufana [70] or Da Fonseca, Grasselli and Tebaldi [47]

where a generalization of the model of Heston [77] is developed. Indeed it appears

that a one-dimensional process such as the CIR is not sufficient to explain the

various sources of volatility and that a multidimensional process is more suitable

to this task. Also a single Wishart can be used in order to model the volatilities

of many assets.

Finally, Wishart processes can be used as models for interest rates (see e.g.

Gnoatto [68]).

The main problem when dealing with processes on cones (Wishart processes

take values on the cone of positive semidefinite matrices) is that they may reach the

boundary of the cone where the coefficients are not Lipschitz continuous so that

strong existence of the solution is not granted by the usual existence theorems.

Moreover classical simulation methods such as the Euler-Maruyama scheme are

not applicable: for instance, applying the Euler scheme to the CIR process,

X̂ti = X̂ti−1
+
T

N
(a− kX̂ti−1

) + σ

√
X̂ti−1

(
Wti −Wti−1

)
(1.4)

Xti may become negative for some ti so that the approximation Xti+1
at the fol-

lowing time is not defined. For this reason, it is important to find alternative
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simulation schemes. The main reference for the simulation of Wishart processes

is Ahdida and Alfonsi [5] where a simulation method working for every value of

α > d− 1 is developed. The methods we propose here are much simpler but work

only under the more restrictive assumption α ≥ d.

Let [0, T ] a time interval and let us fix a regular grid 0 = t0 < t1 = h < t2 =

2h < · · · < tN = T on this interval, where h = T
N

. We can define the subsequent

values (X̂ti , 0 ≤ i ≤ N) of the approximation as soon as we have a family of proba-

bility laws (p̂x(t), t > 0) (the transition probabilities) representing the conditional

distribution of Xti+1
given Xti = x. More precisely, for every measurable bounded

function f

E
[
f
(
X̂ti+1

)
|FN

ti

]
=

∫
R

f(z)p̂X̂ti
(h)(dz) , (1.5)

where FN
ti

= σ(Xt1 , . . . , Xti). In other words, once the value X̂ti , at time ti is

determined, the value X̂ti+1
, at time ti+1 is obtained by sampling the law pX̂ti

(h).

We shall produce some simple simulation schemes for the Wishart process of

the second order, according to the following definition.

Definition 1.1.1. Let D ⊂ Rd a domain and (Xx
t )t, x ∈ D a D-valued process.

We say that (
X̂ti , 0 ≤ i ≤ N

)
(1.6)

is a weak ν-th order scheme for this process if there exists K > 0 such that∣∣E(f(Xx
T ))− E(f(X̂tN ))

∣∣ ≤ K

N ν
(1.7)

for every f ∈ C∞K (D,R). The quantity |E(f(Xx
T )) − E(f(X̂tN ))| is the weak error

associated to f .

In Section 1.2 we prove that the square of a matrix valued Ornstein-Uhlenbeck

process is a Wishart process. In Section 1.3 we recall the composition of schemes

rule of Ninomiya and Victoir [95] and derive simulation schemes for CIR processes.

In Section 1.4 the results of the previous sections are put together in order to devise

a simulation scheme for Wishart processes. Finally in Section 1.5 we report the

results of numerical simulations.
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Notation

– Md(R) = d× d real matrices

– S +
d (R) = symmetric d× d positive definite matrices

– Id, 0d = identity d× d matrix, null d× d matrix

– (Ind )h,k = 1{1≤h=k≤n}, n ≤ d

– AT , tr(A), det(A) = transpose, trace, determinant of matrix A

– Wd(x0, α, b, a) = Wishart process (i.e. solution of (1.2)) with parameters α,

b, a starting at x0 ∈ S +
d (R)

1.2 Squared matrix valued Ornstein-Uhlenbeck

processes

In this section we show that the square of an Ornstein-Uhlenbeck matrix process

is actually a particular case of a Wishart process which is the starting idea of our

procedure. Similar properties were mentioned already in Bru [33] §3.

Proposition 1.2.1. Let a, b ∈Md(R) and Bt a n×d Brownian motion. Let (Yt)t

the n× d-dimensional Ornstein-Uhlenbeck process solution of

dYt = Ytb dt+ dBt a, Y0 = y . (1.8)

Then, Xt = Y T
t Yt ∼ Wd(x, n, b

T , a), x = yTy.

Proof. Keeping in mind that Xij(t) =
∑d

h=1 Yhi(t)Yhj(t), it is simple to compute

the increasing process associated to Xt. Indeed

d〈Xij, Xij〉t =
n∑
h=1

d〈Yhi, Yhj〉t =
n∑
h=1

d〈(Ba)hi, (Ba)hj〉t =

=
n∑
h=1

d∑
m,l=1

d〈Bhlali, Bhmamj〉t =
n∑
h=1

d∑
m,l=1

aliamjδlmdt =

=
n∑
h=1

d∑
l=1

alialjdt = n(aTa)ijdt

(1.9)
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and therefore d〈X,X〉t = n(aTa)dt. Hence, by Ito’s formula,

dXt = dY T
t Yt + Y T

t dYt + n aTa dt =

= (n aTa+ bTY T
t Yt + Y T

t Ytb) dt+ aT dBT
t Yt + Y T

t dBt a.
(1.10)

We prove now that

dXt = (n aTa+ bTXt +Xtb) dt+ aT dW T
t

√
Xt +

√
Xt dWt a (1.11)

for an appropriate d×d Brownian motion (Wt)t≥0 and this will conclude the proof.

Let Vt = ker(Xt) = ker(Y T
t Yt) and pVt , pV ⊥t the matrices of the projec-

tions Rd → Vt and Rd → V ⊥t respectively. Let p∗Vt , p
∗
V ⊥t

their respective ad-

joints, i.e. the embeddings Vt → Rd and V ⊥t → Rd respectively. Let A1(t) =

p∗
V ⊥t

(Y T
t Yt)

−1/2pV ⊥t Y
T
t and A2(t) = p∗VtpVt , so that A1(t)A1(t)∗ = p∗

V ⊥t
pV ⊥t and

A1(t)A1(t)∗ + A2(t)A2(t)∗ = Id (recall however that A1(t) is d × n whereas A2(t)

is d× d). Let now B′ a d× d Brownian motion independent of B and let

Wt =

∫ t

0

A1(t) dBt +

∫ t

0

A2(t) dB′t (1.12)

then it is immediate that W is a d × d Brownian motion. As
√
Xt p

∗
Vt
pVt =

p∗VtpVt
√
Xt = 0, we have

√
Xt dWt = (Y T

t Yt)
1/2 dWt = Y T

t dBt and dW T
t

√
Xt =

dBT
t Yt. Replacing these quantities in (1.10) we obtain (1.11).

Proposition 1.2.1 extends to the matrix valued case the well known fact that

the square of a linear Ornstein-Uhlenbeck process associated to the SDE dYt =

−κ
2
Yt dt+ σ

2
dBt is a CIR process as in (1.3) with a = σ2

4
.

1.3 The rule of composition of schemes

If p(1), p(2) are second order transition probabilities of simulation schemes for dif-

fusion processes with generators L1 and L2 respectively, then the schemes

q(t) = p(1)( t
2
) ◦ p(2)(t) ◦ p(1)( t

2
) (1.13)

and

q(t) = 1
2

(
p(1)(t) ◦ p(2)(t) + p(2)(t) ◦ p(1)(t)

)
(1.14)
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are both second order schemes for the diffusion with generator L1+L2 (see Theorem

1.17 in Alfonsi [8] which extends ideas of Ninomiya and Victoir [95]).

Let us apply this composition rule to the case of a CIR process that is solution

of

dXt =
(
a− κXt

)
dt+ σ

√
Xt dWt, X0 = x ≥ 0 . (1.15)

Its generator can be decomposed

L =
(
a−κx

) d
dx

+
1

2
σ2x

d2

dx2
=
(σ2

4
− κx

) d
dx

+
1

2
σ2x

d2

dx2︸ ︷︷ ︸
:=L2

+
(
a− σ2

4

) d
dx︸ ︷︷ ︸

:=L1

· (1.16)

A second order transition probability for L1 (which is the generator of a deter-

ministic motion) is simply the translation x→ x+ (a− σ2

4
)t. As for L2, being the

generator of the square of the Ornstein-Uhlenbeck process

dYt = −κ
2
Yt dt+

σ

2
dBt , (1.17)

one may just recall that, with the initial condition Y0 = y, Yt is N(e−
κ
2
ty, (1 −

e−κt)σ
2

4k
)-distributed. Therefore a second order (actually exact) transition proba-

bility for L2 can be realized as

Xti →
(
e−

κ
2
h
√
x+

σ

2

√
ψk(h)W

)2

(1.18)

where ψκ(t) = 1
κ
(1 − e−κt) and W denotes a N(0, 1) distributed r.v. (here h =

ti+1 − ti is the amplitude of the time discretization).

Therefore, thanks to the composition rule all the following are second order

schemes for the process (1.3):

q1(t) = p(1)( t
2
) ◦ p(2)(t) ◦ p(1)( t

2
) (1.19)

q2(t) = p(2)( t
2
) ◦ p(1)(t) ◦ p(2)( t

2
) (1.20)

q3(t) = 1
2

(
p(1)(t) ◦ p(2)(t) + p(2)(t) ◦ p(1)(t)

)
(1.21)

and also

q4(t) = p(1)( t
4
) ◦ p(2)( t

2
) ◦ p(1)( t

2
) ◦ p(2)( t

2
) ◦ p(1)( t

4
) (1.22)

which turns out to be a second order scheme by application of the composition

rule twice.

We have therefore

8



Proposition 1.3.1. Assume a ≥ σ2

4
. Then q1, q2, q3 and q4 are discretization

schemes of order 2 for the CIR process (1.15).

The condition a ≥ σ2

4
is necessary in order to ensure that the iteration p(1)

produces a value in R+.

The numerical results of Section 1.5 will allow to compare the performances of

these four schemes, q2 and q4 appearing to be the most promising.

Note also that if a = σ2

4
, then all four schemes reduce to p(2) and therefore have

zero bias. We shall see in the next section that actually also for other values of a

it is possible to obtain an exact simulation scheme.

1.4 The simulation of Wishart processes

The arguments of the previous paragraph are easily extended to a matrix valued

framework thus obtaining a simulation scheme for the Wishart process. Consider

the generator of a Wd(x, α, b, a)

L = tr[(αaTa+ bx+ xbT )D] + 2tr(xDaTaD) . (1.23)

Let us assume α ≥ d and write it as the sum L = L1 +L2 where, denoting n = bαc
the integer part of α,

L2 = tr[(naTa+ bx+ xbT )D] + 2tr(xDaTaD) (1.24)

is the generator of a Wd(x, n, b, a) which is a squared Ornstein-Uhlenbeck process,

whereas

L1 = tr[(α− n)aTaD] (1.25)

is again the generator of a deterministic process associated to an ordinary differ-

ential equation and

Xti+1
= Xti + (α− n)aTa t (1.26)

is a second order scheme for L1. Therefore, thanks to Proposition 1.2.1, given a

second order scheme for a n× d dimensional Ornstein-Uhlenbeck process, we can

obtain a second order discretization scheme for a generic Wishart process using the

scheme composition rule. Actually it is possible to simulate exactly such a matrix

valued Ornstein-Uhlenbeck process as follows

9



Let Y be the matrix valued solution of the equation

dYt = Ytb
Tdt+ dBta, Y0 = y. (1.27)

Let us recall how it is possible to write its solution explicitly. First of all Yt = yetb
T

is solution of

Ẏt = Ytb
T , Y0 = y . (1.28)

If we look for a solution of (1.27) of the type Yt = Cte
tbT , Ito’s lemma gives

dYt = dCt e
tbT + Cte

tbT bT dt (1.29)

and, comparing with (1.27), we obtain that Ct must satisfy

dCt e
tbT = dBta . (1.30)

Therefore

Ct =

∫ t

0

dBsae
−sbT (1.31)

and we obtain that the solution of (1.27) is given by

Yt = yetb
T

+

∫ t

0

dBsae
(t−s)bT . (1.32)

This is a matrix valued Gaussian r.v. with mean yetb
T

and whose covariances are

E
((∫ t

0

dBsae
(t−s)bT

)
ij

(∫ t

0

dBsae
(t−s)bT

)
hk

)
=

=
∑
r,`

E
(∫ t

0

dBir(s)(ae
(t−s)bT )rj

∫ t

0

dBh`(s)(ae
(t−s)bT )`k

)
=

= δih

∫ t

0

∑
r

(ae(t−s)bT )rj(ae
(t−s)bT )rk ds =

= δih

(∫ t

0

(ae(t−s)bT )T (ae(t−s)bT ) ds
)
jk

= δih

(∫ t

0

eubaTaeub
T

du
)
jk
.

(1.33)

Remark that, given a matrix W whose coefficients are independent and N(0, 1)

distributed and a matrix A, then the matrix-valued r.v. WA has covariances

E((WA)ij(WA)hk) =
∑
r,`

E(WirArjWh`A`k) = δih(A
TA)jk . (1.34)

10



So an exact second order scheme for the Ornstein-Uhlenbeck process Y is, again

denoting h = ti+1 − ti,
Ŷti+1

= Ŷtie
hbT +WC1/2 (1.35)

where W ∼ N(0d, Id) and C is the matrix

C =

∫ h

0

eubaTaeub
T

ds. (1.36)

Therefore we can derive a second order (actually exact) scheme for L2 in the

following way (recall that Y is n × d-valued, whereas the process with generator

L2 is d× d-valued):

Xti+1
=
(
Ytie

hbT +WC1/2
)T(

Ytie
hbT +WC1/2

)
(1.37)

where Yti is any n× d matrix such that Y T
ti
Yti = Xti possibly obtained by taking

the square root of the positive defined d × d matrix Xti and then adding n − d

rows of zeros. If we denote p(2) this scheme and p(1) the scheme in (1.26), by the

composition rule the schemes defined in (1.19), (1.20), (1.21) and (1.22) are second

order for a Wd(x, α, b, a) process. Remark that in this construction the condition

α ≥ d appears again, similarly to what happens for the CIR process, in order to

ensure that each iterations produces a positive definite matrix.

Proposition 1.4.1. Assume α ≥ d and denote p(1) and p(2) the transition prob-

abilities defined in (1.26) and (1.37) respectively. Then the schemes defined in

(1.19), (1.20), (1.21) and (1.22) are of order 2 for the Wishart process (1.1).

These schemes require only the simulation of Gaussian r.v.’s and the computa-

tion, at every iteration, of the square root of a matrix. They require also, but only

once, the computation of the matrices ehb
T

and C and of its square root. This task

is easily performed when using a high-level language environment as, for instance,

Matlab or Scilab. When programming in C one may consider of performing the

computation of ehb
T

and C with Scilab or any other high level language and then

give them as arguments to the C code.

Remark 1.4.2. The schemes produced in Proposition 1.4.1 are exact if α is an

integer larger that d and are therefore expected to have a very small bias when

α − bαc is small. This fact is confirmed by the numerical experiments of the next

section.
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Remark 1.4.3. The previous remark suggests how to produce a possibly more

accurate scheme also for the CIR process. Actually just remark that a CIR process

is a Wishart process with d = 1.

More explicitly, if n := b 4a
σ2 c, an exact scheme for the generator

L̃2 =
(
n
σ2

4
− κx

) d
dx

+
1

2
σ2x

d2

dx2
(1.38)

is obtained through the simulation of a n× 1 dimensional Ornstein-Uhlenbeck pro-

cess. An exact scheme for it with step h is therefore

Xti+1
=
(
Ytie

−κ
2
h +

σ

2

√
ψk(h)W

)T(
Ytie

−κ
2
h +

σ

2

√
ψk(h)W

)
(1.39)

where W is now a n × 1 matrix whose entries are independent and N(0, 1)-

distributed and Yti denotes any n × 1 matrix such that Y T
ti
Yti = Xti. Denoting

p̃(2) this scheme and p̃(1) the scheme

Xti+1
= Xti +

(
a− n σ

2

4

)
h (1.40)

one obtains a second order scheme for L as in (1.16) by composing them according

to one of the rules (1.19)–(1.22). The schemes obtained in this way are exact if

b 4a
σ2 c is an integer number and can be expected to perform better than the schemes

described in 1.3 if b 4a
σ2 c is large.

1.5 Numerical results

CIR processes

First of all we have performed 1000 runs of 1000 simulated paths each, and collected

the values of the paths at time 1. For every run we have computed the chisquare

discrepancy between the empirical distribution obtained at time 1 with the known

exact distribution at time 1 duly discretized (into 32 subintervals). We have thus

obtained 1000 random numbers that, if the empirical distribution were drawn from

the exact distribution would be each χ2(31)-distributed. In Figure 1.1 we report

the histograms of these numbers against the density of the χ2(31) distribution. We

have computed, for two different values of a, an approximation of the characteristic

function at 1, E[eiX
x
T ], for T = 1, whose exact value can be derived from the

12
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Figure 1.1: The chisquare comparison. Here the parameters were: κ = 0.5, σ = 0.8,
a = 5 with x0 = 0.01. We used the scheme q2 of (1.20).

estimator bias ×104

q1 2.42
q2 0.64
q3 1.12
q4 0.99

A− A 2nd order 0.72
A− A 3rd order 0.56

Table 1.1: Bias of the estimators of E[eiX1 ] for the values κ = 0.5, σ = 0.8, a = 0.4
and starting at x0 = 0.01. The true value is 0.9139167 + i 0.2968570, 6.4 · 106

simulated paths, time step h = 1
10

.

known explicit expression of the Laplace transform of the distribution at time 1

(see Lamberton and Lapeyre [86] p. 131 e.g.).

Tables 1.1 and 1.2 give a comparison of the biases of the different estimators,

whereas Figures 1.2 and 1.3 gives the corresponding graphical information.

Wishart processes

We have tested the simulation scheme of 1.4 computing numerically the value

of the characteristic function and comparing with the exact value. Actually (see

e.g. Proposition 5 in Ahdida and Alfonsi [5]) the characteristic function of a

Wd(x, α, b, a) at time t at v ∈Md(R) is given by

L(v) = E[exp(itr(vXx
t ))] =

exp(tr[iv(Id − 2iqtv)−1mtxm
T
t ])

det(Id − 2iqtv)
α
2

· (1.41)
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Figure 1.2: Graphic of the simulations of Table 1.1: the true value (the large •),
the estimators q1, q2, q3 and q4 (◦), and the Ahdida-Alfonsi procedures (•) of order
2 (a2) and 3 (a3).

estimator bias ×104

q2 2.49
q2, W15× 1 0.88

q4 4.02
q4 W15× 1 3.40

A− A 2nd order 2.32
A− A 3rd order 1.49

Table 1.2: Bias of the estimators of E[eiX1 ] for a = 2.5 starting at x0 = 0.01, with
κ = 0.5, σ = 0.8 as above. The true value is −0.2782669 + i 0.7344139, 6.4 · 106

simulated paths, the time step h = 1
10

. W15 × 1 indicates that the simulation
has been performed taking the square of a 15× 1 dimensional Ornstein-Uhlenbeck
process, as explained in Remark 1.4.3 (here b 4a

σ2 c = 15).

where

mt = etb, qt =

∫ t

0

esbaTaesb
T

ds . (1.42)

We performed simulations with two different values of α and

a =

2 1 0

0 1 0

0 0 1

 b = −

4 1 1

0 1 1

0 0 1
10

 (1.43)
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Figure 1.3: Graphic of the outcomes of Table 1.2: the true value (the large •), the
estimators q2 and q4 taking the square of a linear Ornstein-Uhlenbeck process (◦)
the estimators q2 and q4 taking the square of a 15× 1 Ornstein-Uhlenbeck process
(�) and the Ahdida-Alfonsi procedures of order 2 (a2) and 3 (a3).

and initial distribution

x0 =

1 0 0

0 4 0

0 0 1

 (1.44)

and computed the characteristic function E(etr(ivX
x
1 )) with

v =

 0.24 0.12 −0.01

0.12 0.16 0.08

−0.01 0.08 0.08

 (1.45)

We performed 400 runs of 16 000 simulated paths each with the four schemes q1–q4

and the Ahdida-Alfonsi procedures of order 2 and 3. The values of the correspond-

ing overall estimators (over 400 × 16000 = 6.4 · 106 paths) for the value α = 3.7

is plotted in Figure 1.5 and the corresponding biases are given in Table 1.3. The

outcome is plotted in Figure 1.4. Table 1.4 and Figures 1.6 and 1.7 provide the

same information for the value α = 5.1. In this case, α being close to its integer

part it is to be expected that q1, q2, q3 and q4 should perform particularly well.

In conclusion the simulation schemes proposed above in this paper are very

simple to implement and appear to perform satisfactorily. The Ahdida-Alfonsi

procedures remain however the only ones to our knowledge to confront with the

case d− 1 ≤ α < d, which is important in financial applications.
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scheme bias ×103

q1 5.68
q2 2.60
q3 5.89
q4 1.51

A− A 2nd 2.42
A− A 3rd 1.97

Table 1.3: By (1.41), the value of the characteristic function at v, with the given
a, b, x0 and α = 3.7 is 1.653838 + i7.120555.
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Figure 1.4: 400 estimated values with 16 000 paths each (with scheme q4) compared
with the true value (the large •). We used the scheme (1.22) and the time interval
[0, 1] split into 10 subdivisions. ◦ denotes the overall estimated value. Marked are
also the estimators obtained using the Ahdida-Alfonsi procedure of order 2, •2,
and of order 3, •3.

0.161 0.163 0.165 0.167

0.711

0.713

0.715

1

2
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4

a2

a3

Figure 1.5: The outcomes of our four algorithms based on the square Ornstein-
Uhlenbeck (◦), the true value (the large •) and the Ahdida-Alfonsi procedures of
order 2 (a2) and 3 (a3). Here α = 3.7.
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scheme bias ×104

q1 8.73
q2 5.05
q3 9.40
q4 3.42

A− A 2nd 32.91
A− A 3rd 16.08

Table 1.4: The exact value of the characteristic function at v, with the given a, b
and α = 5.1 is −0.1576554 + i0.6380182. Remark that the given values of the bias
have to be multiplied by 104 (instead of 103 in Table 1.3). Of course the good
performance of the schemes q1–q4 is due to the fact that this value of alpha is close
to its integer part.
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Figure 1.6: Again 400 estimated values with 16 000 paths each compared with the
true value (large •). Now α = 5.1 and we simulated the square of a 5×3 Ornstein-
Uhlenbeck process. We used the scheme (1.22) and the time interval [0, 1] split into
10 subdivisions. ◦ denotes the overall estimated value (almost invisible, very near
the true value). Marked are also the estimators obtained using the Ahdida-Alfonsi
procedure of order 2, •2, and of order 3, •3.
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Figure 1.7: The outcomes of the four estimators based on the squared Ornstein-
Uhlenbeck (◦), the true value (the large •) and the Ahdida-Alfonsi procedures of
order 2 (a2) and 3 (a3). Here α = 5.1 and the underlying Ornstein-Uhlenbeck
process was 5× 3-dimensional.
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Abstract

We consider a tractable affine stochastic volatility model that gener-

alizes the seminal Heston [77] model by augmenting it with jumps in the

instantaneous variance process. In this framework, we consider both real-

ized variance options and VIX options, and we examine the impact of the

distribution of jumps on the associated implied volatility smile. We provide

sufficient conditions for the asymptotic behavior of the implied volatility of

variance for small and large strikes. In particular, by selecting alternative

jump distributions, we show that one can obtain fundamentally different

shapes of the implied volatility of variance smile – some clearly at odds with

the upward-sloping volatility skew observed in variance markets.

2.1 Introduction

There is a vast and lively literature investigating the presence of jumps in the

evolution of financial assets. In a seminal paper, Duffie et al. [53] proposed the class

of affine jump-diffusion processes, a flexible and tractable modelling framework

allowing for jumps both in asset prices and in their stochastic variances. Since

then, affine models have been applied empirically in a number of studies, including
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Broadie et al. [30], Chernov et al. [39], Eraker et al. [56], and Eraker [55] among

others. These studies generally find evidence for discontinuities both in the price

level and its volatility. In particular, the consensus appears to be that jumps are

needed to capture the steep and negative skew observed in the short end of the

volatility surface implied by equity options. We refer to Duffie et al. [53] and

Gatheral [62] for a detailed analysis of the effect of jumps when calibrating affine

models to S&P500 option prices.

A substantial body of literature considers the pricing of derivatives written on

the volatility or variance of an asset such as CBOE’s VIX index. In contrast to

the case of equity markets, the volatility surface implied by volatility options is

characterized by an upward sloping smile. As indicated by Sepp [101], this stylized

feature reflects the fact that out-of-the-money call options on volatility provide

protection against market crashes. To compensate for the insurance risk, the writer

of a call on volatility will charge a premium accordingly, very much like the writer of

put on the stock or index itself. Several authors suggest that the inclusion of jumps

in the volatility process provides a parsimonious and empirically justifiable way

to capture the positive skew associated with volatility derivatives. Among them,

Sepp [100], [101], and Lian and Zhu [90] propose augmenting the popular square-

root dynamics of Heston [77] to include exponential jumps in the instantaneous

variance process.

Despite the common notion that jumps are a necessary modelling ingredient,

the question of how to model the distribution of jumps and its financial implications

seems to be a matter of lesser relevance. A number of different jump specifications

has been examined within the literature concerning equity derivatives. For exam-

ple, Nicolato and Venardos [94] and Carr et al. [35] compare the performances of

alternative affine models when calibrated to S&P500 option prices. These studies

indicate that, ceteris paribus, the specific choice of jump distribution has a minor

effect on the qualitative behavior of the skew and the term structure of the implied

volatility surface of equity options.

This might be the reason why a similar analysis is basically absent from the lit-

erature on volatility derivatives. To the best of our knowledge, the above-mentioned

exponential distribution appears to be the only candidate proposed to model jump

sizes in the instantaneous variance process.

As a matter of fact, several authors have looked at a number of alternative
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dynamics based on diffusive or more general continuous-paths processes. To name

a few, Drimus [52] considers Log-OU stochastic volatility models, Gatheral [63]

proposes a double mean reverting process while Drimus [51] and Baldeaux and

Badran [13] examine the performance of the 3/2 model. Also fractional dynamics

have been recently examined by Bayer et al. [15] as an alternative to the diffusive

forward variance model proposed by Bergomi [19].

Finally, among the related literature we mention the work of Papanicolau [96]

where the relationship between VIX options and the negative moments of the SPX

is analyzed in a model-free way.

In this paper we fix the dynamics of the underlying asset within the affine

jump-diffusion framework and we focus uniquely on the effect of changing the law

of the jump component. We show that, in contrast to the case of SPX options,

the particular distribution of jumps does have a profound impact on the pricing

of volatility derivatives, predicting completely different shapes and characteristics

of the associated implied volatility surface.

To keep matters simple, we consider the class of SVJ-v models, a particular case

of affine stochastic volatility models which accounts for jumps in the dynamics of

the variance process. The SVJ-v framework allows for an enormous variety of jump

distributions, and it includes variance specifications of the Ornstein-Uhlenbeck

type introduced by Barndorff-Nielsen and Shepard [14]. This subclass is particu-

larly neat, as the instantaneous variance evolves solely by jumps, which allows us

to isolate the unique impact of the jump distribution on volatility derivatives.

We start our analysis by considering options written on the variance realized

by the returns of an underlying asset over the life-time of the contract. Existing

studies on pricing of realized variance options include Carr et al. [34], Drimus [51],

and Sepp [100], while Cont and Kokholm [42] develop a flexible market model

for consistent valuation of realized variance derivatives, index options, and VIX

derivatives. The main advantage of dealing with this kind of contracts in the SVJ-

v framework is that the realized variance can be identified with the integrated

variance and its Laplace transform is available in closed-form. This enables us to

combine classical Tauberian theorems with the more recent results of Lee [89] and

Gulisashvili [73] on implied volatility asymptotics, and investigate the intimate

link between the distribution of jumps, the distribution of realized variance, and

ultimately the impact on the implied volatility of realized variance options.
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More specifically, we provide simple and easy-to-check sufficient conditions re-

lating the tail-distribution of the variance jumps with the asymptotic behavior of

the implied volatility for small as well as large strikes. Rather than deriving precise

asymptotic estimates, we are interested in the qualitative behavior of the wings,

i.e., whether they are upward or downward sloping, as this gives an indication of

the overall smile shape. We provide numerical illustrations for a variety of positive

distributions for jump specifications, showing how the commonly used exponential

law might not be the optimal choice as it inherently leads to a downward-sloping

volatility skew. Finally, we extend the analysis to the case of VIX options and we

obtain similar results.

The rest of the paper is organized as follows: In Section 2.2 we present the nec-

essary background on wing asymptotics and we provide some preliminary results

on wing asymptotics for a general distribution of the underlying. In Section 2.3 we

specialize the analysis to the case of realized variance options in the SVJ-v mod-

elling framework and we derive sufficient conditions based on the jump component

for the asymptotic behavior of the smile. In Section 2.4 we describe a number of

alternative jump distributions and present numerical illustrations for the selected

cases. In Section 2.5 we extend the analysis to the wing asymptotics of VIX op-

tions and in Section 2.6 we summarize and conclude the paper. In the Appendix

we provide the details of some lengthy proofs.

2.2 Preliminary Results on Wing Asymptotics

In this section we provide a few preliminary results relating the asymptotic be-

havior of the implied volatility at small or large strikes to the distribution of the

underlying random quantity. To be more precise, fix a maturity T and denote by

HT the risk-neutral value of the underlying asset at maturity. Assuming a sim-

plified economy with zero interest rates and dividend payments, the price of a

European call with strike K is given by C(K) = E (HT −K)+. The corresponding

put price P (K) can be obtained by the put-call parity relation

C(K)− P (K) = E[HT ]−K .
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At this stage, we do not specify the nature of the underlying. We only require

that HT is a positive random variable with finite first moment which, without loss

of generality, we normalize to one, E[HT ] = 1. The distribution function, the tail

function and the Laplace transform of HT are denoted by

FH(x) = Q(HT ≤ x), FH(x) = 1− FH(x), LH(x) = E[e−xHT ] .

The implied volatility I(K) associated with C(K) is defined as the solution of the

equation

C(K) = Φ

(
log(1/K)

I(K)
√
T

+
I(K)

√
T

2

)
−KΦ

(
log(1/K)

I(K)
√
T
− I(K)

√
T

2

)
,

where Φ(·) denotes the cumulative distribution function of a standard normal law.

We assume 0 < FH(x) < 1 thus excluding cases for which the impled volatility is

trivially defined as zero.

The analysis of I(K) at extreme strikes, referred to as smile wings, has at-

tracted considerable attention during the last decade. In a ground-breaking paper,

Lee [89] relates the smile wings to the number of moments of the underlying distri-

bution HT . Since then, a large part of the literature has been devoted to providing

refinements and extensions of Lee’s moment formulas. See, for example, the work

of Benaim and Friz [17], [18], Gulisashvili [71], [73] and the monograph by Gulisas-

hvili [72]. The results relevant to this work are summarized in Theorems 2.2.1 and

2.2.3 below. The function ψ appearing in the formulations is given by

ψ(x) = 2− 4(
√
x2 + x− x),

and g(x) ∼ h(x) means that g(x)/h(x)→ 1 as either x→ 0 or x→∞ depending

on the context. Also, recall that a positive, measurable function f on R+ is said

to be regularly varying at ∞ with index ρ ∈ R if the following holds

lim
x→∞

f(ξx)

f(x)
= ξρ , (2.1)

for all ξ > 0. In this case we write f ∈ Rρ. When f ∈ R0, then we say that f

is slowly varying at ∞. It can be shown that f ∈ Rρ if and only if it takes the

following form

f(x) = xρ`(x) (2.2)
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where ` ∈ R0.

Let us start by considering the behavior of I(K) at large strikes.

Theorem 2.2.1. The following statements hold for the implied volatility I(K) at

large strikes.

(i) Let pH = sup
{
p : E[Hp+1

T ] <∞
}

, then

lim sup
I2(K)T

log(K)
= ψ(pH) as K →∞. (2.3)

(ii) If pH <∞, then we can replace lim sup with the limit and write

I2(K) ∼ ψ(pH)
log(K)

T
as K →∞ , (2.4)

if and only if we can find f1, f2 ∈ R−ρ with ρ = pH , such that f1(K) ≤
C(K) ≤ f2(K) for all K > K0, with K0 large enough.

(iii) If pH =∞, then

I(K) ∼ 1√
2T

log(K)

(
log

1

C(K)

)−1/2

as K →∞. (2.5)

The large strike formula (2.3) is derived in Lee [89], while statements (2.4)

and (2.5) can be found in Gulisashvili [73]. Simple applications of Theorem 2.2.1

yield the following results which will be pivotal to the analysis we carry out in

Sections 2.3 and 2.5.

Proposition 2.2.2. The following holds:

(a) Suppose that the tail function FH ∈ R−ρ−1 for ρ > 0. Then the asymptotic

equivalence (2.4) at large strikes holds with pH = ρ.

(b) Suppose that the tail function FH is dominated by a Weibull-type function,

i.e. there exist positive constants α, β, γ > 0 and a x0 > 0 such that

FH(x) ≤ γe−αx
β

for all x > x0 . (2.6)

Then pH =∞ and I(K)→ 0 as K →∞.
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Proof. Recall that

E[Hp+1
T ] =

∫ ∞
0

up+1dFH(u) = (p+ 1)

∫ ∞
0

upFH(u)du , (2.7)

and

C(K) =

∫ ∞
K

FH(u)du . (2.8)

(a) Well known results from regular variation theory, see e.g. Feller [58], VIII.9,

state that for a bounded ` ∈ R0 and for x→∞ the following holds:

If q < −1 , then

∫ x

0

uq`(u)du converges, while it diverges if q > −1 . (2.9)

If q < −1 , then
xq+1`(x)∫∞
x
uρ`(u)du

→ −(q + 1) . (2.10)

Hence, by virtue of (2.2) and (2.7), the first statement implies that pH = ρ. The

second statement applied to (2.8) shows that C(K) ∈ R−ρ and the conclusion

follows immediately from (ii) in Theorem 2.2.1.

(b) Still from (2.7) we see that condition (2.6) implies that pH =∞. Furthermore,

notice that for q ∈ R the following holds

lim
x→∞

xq+1e−αx
β∫∞

x
uqe−αuβdu

=∞ . (2.11)

Hence, for K large enough, it holds that

C(K) ≤
∫ ∞
K

γe−αu
β

du ≤ AKe−αK
β

where A is a positive constant, and the result now follows from Gulisashivili’s

criterion (2.5) for large strikes.

Direct application of Proposition 2.2.2 may be difficult as in many models

the tail function of the underlying distribution is not known, while the Laplace

transform is available in closed form. In some cases, conditions based on LH can

be obtained via Tauberian theory, which offers a number of results relating the

behavior of FH near infinity/zero to that of LH near zero/infinity. In particular,

from Theorem 8.1.6 in Bingham et al. [20] it follows that if n is a strictly positive

integer and n = ρ+ r with ρ > 0 and 0 < r < 1, then

FH(x) ∈ R−ρ if and only if (−1)nL (n)
H (1/x) ∈ R r , (2.12)
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where we have used the notation f (n) = dnf
dxn

. So, for non integer ρ, the regular varia-

tion condition required in part (a) of Proposition 2.2.2 may be assessed via (2.12).

In contrast, we cannot find an equivalent formulation of the tail condition (2.6) in

terms of LH unless β = 1. In this case, the domain DH = {x ∈ R : LH(x) <∞}
determines whether FH(x) is exponentially dominated, since

FH(x) ≤ γe−αx for all x ≥ x0 if and only if 0 ∈ D̊H , (2.13)

as one may show via Markov’s inequality.

Let us consider the behavior of I(K) at small strikes. Once again, we start by

listing the relevant results from Lee [89] and Gulisashvili [73].

Theorem 2.2.3. The following statements hold for the implied volatility I(K) at

small strikes.

(i) Let qH = sup
{
q : E[H−qT ] <∞

}
, then

lim sup
I2(K)T

log(1/K)
= ψ(qH) as K → 0. (2.14)

(ii) If qH <∞, then we can replace lim sup with the limit and write

I2(K) ∼ ψ(qH)
log(K)

T
as K → 0 , (2.15)

if and only if we can find f1, f2 ∈ R−ρ with ρ = qH + 1 such that f1(1/K) ≤
P (K) ≤ f2(1/K) for all K < K0, with K0 small enough.

(iii) If qH =∞, then

I(K) ∼ 1√
2T

(
log

1

K

)(
log

K

P (K)

)−1/2

as K → 0. (2.16)

The small strikes analogous of Proposition 2.2.2 reads as follows.

Proposition 2.2.4. Assume FH is continuous. The following holds:

(a) Suppose that for a ρ ≥ 0, FH(1/x) ∈ R−ρ. Then the asymptotic equivalence

(2.15) holds with index qH = ρ.
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(b) Suppose that there exist positive constants α, β, γ > 0 and x0 > 0 such that

FH satisfies

FH(x) ≤ γe−αx
−β

for all x < x0. (2.17)

Then the left-wing index qH =∞ and I(K)→ 0 as K → 0.

Proof. Since FH is continuous, the moment E[H−qT ], q > 0 can be expressed as

E[H−qT ] = q

∫ ∞
0

uq−1FH(1/u)du ,

while the price of a put is given by

P (K) =

∫ K

0

FH(u)du =

∫ ∞
1/K

u−2FH(1/u)du .

The results now follow from Theorem 2.2.3, proceeding in complete analogy with

proof of Proposition 2.2.2.

Similar to the large strikes case, part (a) of Proposition 2.2.4 can be refor-

mulated in terms of the Laplace transform as a result of Karamata’s Tauberian

theorem. In fact, by Feller [58], XIII.5 Theorem 3, we have that for ρ > 0, the

following holds

FH(1/x) ∈ R−ρ if and only if LH(x) ∈ R−ρ, (2.18)

and in this case LH(x) ∼ Γ(1 + ρ)FH(1/x) as x → ∞. As for condition (2.17)

in part (b), one may use a Tauberian result of the exponential type to verify the

stronger requirement that logFH(x) ∼ −αx−β. More precisely, from de Bruijn’s

Tauberian Theorem it follows that if r ∈ (0, 1) and β > 0 satisfy 1
r
− 1

β
= 1, and

α , s > 0, then

lim
x→0

xβ logFH(x) = −α if and only if lim
x→∞

log LH(x)

xr
= −s , (2.19)

and in this case (r s)1/r = (αβ)1/β. See, e.g., Bingham et al. [20], Theorem 4.12.9.

2.3 Realized Variance Options in the SVJ-v

model

In this section, we specialize the analysis carried out above, to the case of options

written on the realized variance of an asset. Recall that the continuously sampled
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realized variance, hereafter denoted by VT , is defined as the annualized quadratic

variation of the log-price process over the time interval [0, T ]. More precisely, we

set

VT =
1

T
[X]T , (2.20)

where Xt = logSt denotes the log-price and

[X]T = lim
∆→0

N∑
n=1

(Xtn −Xtn−1)2 ,

where ∆ = ti+1 − ti is the step size of the partition 0 < t1 < · · · < tN = T .

In this work, we assume that the underlying price process evolves according to

an affine stochastic volatility model known in the literature as the SVJ-v model.

Specifically, we maintain the assumption of zero dividends and interest rates, and

we model the log-price X and its instantaneous variance v via the following risk-

neutral dynamics

dXt = −1
2
vt dt+

√
vtdWt

dvt = λ(θ − vt)dt+ σ
√
vtdBt + dJt

(2.21)

where λ, θ and σ are positive constants, the processes W and B are – possibly

correlated – Brownian motions while J is an increasing and driftless Lévy process

which is independent of (W,B). Thus, the unit-time Laplace transform LJ(u) =

E[e−uJ1 ], takes the form

LJ(u) = eκJ (u) with κJ(u) =

∫ ∞
0

(e−ux − 1)νJ(dx), u ≥ 0 , (2.22)

where the Lévy measure νJ is a measure on the positive real line such that∫ 1

0
xνJ(dx) <∞. Finally, the parameters λ, θ and σ are non-negative constants.

The stochastic volatility model (2.21) generalizes the seminal Heston [77] model

by augmenting the square root process describing v to allow for jumps. Further-

more, by setting θ = σ = 0 in (2.21), we obtain the non-Gaussian Ornstein-

Uhlenbeck (OU for short) model class proposed by Barndorff-Nielsen and Shepard

[14]

vt = e−λtv0 +

∫ t

0

e−λ(t−s)dJs , (2.23)

where the instantaneous variance moves uniquely by jumps.
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The name SVJ-v refers to the fact that in (2.21), jumps are allowed only at the

variance level, in contrast to more general affine specifications such as the SVJJ

model of Duffie et al. [53], where both v and X are affected by jumps. The main

advantage of the SVJ-v framework is that the quadratic variation coincides with

the integrated variance, and therefore the realized variance (2.20) is given by

VT =
1

T

∫ T

0

vtdt.

In affine models, such a quantity is easy to handle as its Laplace transform is

known in closed form. Duffie et al. [53] show that LV (u, T ) = E[e−uVT ] is given by

LV (u, T ) = eκV (u,T ) with κV (u, T ) = α(u, T ) + v0β(u, T ) + δ(u, T ) , (2.24)

where the functions α, β and δ satisfy the ODEs

∂

∂t
α = θλβ (2.25)

∂

∂t
β = −λβ +

1

2
σ2β2 − u

T
, (2.26)

∂

∂t
δ = κJ(−β) , (2.27)

with initial conditions α(u, 0) = β(u, 0) = δ(u, 0) = 0. For the full SVJ-v model

with θ, σ > 0, the explicit solutions read as follows

α(u, t) = −2λθ

σ2
log

(
γ(u) + λ+ (γ(u)− λ)e−γ(u)t

2γ(u)

)
− λθ

γ(u) + λ
t (2.28)

β(u, t) = − u
T

2(1− e−γ(u)t)

γ(u) + λ+ (γ(u)− λ)e−γ(u)t
(2.29)

δ(u, t) =

∫ t

0

κJ(−β(u, s))ds , (2.30)

where γ(u) =
√
λ2 + 2σ2 u

T
. In the OU specification (2.23), the realized variance

VT can be explicitly written as

VT = v0ε(T ) +

∫ T

0

ε(T − t)dJt , (2.31)

where

ε(t) =
1− e−λt

λT
, (2.32)
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and the expression for κV simplifies to

κV (u, T ) = −u ε(T )v0 +

∫ T

0

κJ(u ε(t))dt . (2.33)

Based on the explicit form of LV , the Tauberian theory allows for a comfortable

analysis of the distributional properties of the realized variance. In particular, we

are interested in analyzing how alternative selections of the jump law J1 affect

VT and, in turn, the asymptotic behavior of the volatility curve I(K) implied by

realized variance options. Consistent with the notation adopted so far, we write

FJ , FV for the distribution functions of J1, VT , and FJ , FV for the corresponding

tail functions.

We start with a preliminary lemma stating that moment finiteness and reg-

ularly varying tail are properties which J1 passes on to VT basically unchanged.

The proof is based on a careful examination of the ODEs (2.28)–(2.30), and makes

use of the Tauberian equivalence (2.12). Although quite simple, the derivation is

somewhat lengthy and therefore the details are reported in the Appendix.

Lemma 1. In the SVJ-v model (2.21) the following holds:

(i) If p ≥ 0, then E [Jp1 ] <∞ if and only if E
[
V p
T

]
<∞ .

(ii) If FJ ∈ R−ρ with ρ > 0 non integer, then FV ∈ R−ρ. In the OU subclass

(2.23), the statement holds for arbitrary ρ > 0.

Statement (i) shows that to guarantee E [VT ] < ∞ and enable a meaningful

analysis of options written on VT , we need to assume

E[J1] <∞ or, equivalently,

∫ ∞
0

xνJ(dx) <∞ . (2.34)

In addition, we see that denoting by

pJ = sup
{
p : E[Jp+1

1 ] <∞
}
, (2.35)

Lee’s formula (2.3) at large strikes holds with index pV = pJ . Proposition 2.3.1

below illustrates further how the tail properties of the jump distribution determine

the behavior of the implied volatility I(K) at large strikes.

Proposition 2.3.1. In the SVJ-v model (2.21) the following holds:
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(a) Suppose that FJ ∈ R−ρ−1 with ρ > 0 non integer. Then the large strikes

asymptotic equivalence (2.4) holds with pV = ρ. In the OU subclass (2.23),

the statement holds for arbitrary ρ > 0.

(b) Suppose that FJ is exponentially dominated

FJ(x) ≤ γe−αx for all x ≥ x0

with α, γ > 0 and x0 large enough. Then pV =∞ and I(K)→ 0 as K →∞.

Proof. Statement (a) follows directly from Proposition 2.2.2-(a), and Lemma 1-

(ii). As for statement (b), (2.13) implies that κJ(u0) < ∞ for a u0 < 0. A simple

inspection of (2.28) – (2.30) shows that there exists u1 < 0 such that κV (u1) <∞,

and the conclusion follows from Proposition 2.2.2-(b).

Let us now examine the impact of the jump distribution on the implied volatil-

ity at small strikes. It turns out that in SVJ-v specifications which comprises a

diffusion component, jumps have no effect on the asymptotic behaviour of the left

wing of I(K), which always vanishes to zero.

Proposition 2.3.2. Consider the SVJ-v model (2.21) with σ > 0. Then, for any

choice of jump distribution J1, it holds that qV =∞ and I(K)→ 0 as K → 0.

Proof. Let s =
√

2
Tσ2 . From (2.28), (2.29), we see that limu→∞

α(u,T )+β(u,T )

u1/2 = −s.
Furthermore, β(u, t) ≥ −s u1/2 for all u , t ≥ 0 and from (2.30) it follows that

TκJ(s u1/2) ≤ δ(u, T ) ≤ 0 for all u ≥ 0 .

Since 1−e−u1/2sx

u1/2 ≤ min(sx, 1), for all u ≥ 1, we can use a dominated convergence

argument to show that limu→∞
κJ (su1/2)

u1/2 = 0, so that limu→∞
δ(u,T )

u1/2 = 0. All in all, it

holds that limu→∞
log LV (u)

u1/2 = −s and the result follows from de Bruijn’s Tauberian

equivalence (2.19), and Proposition 2.2.4-(b).

To obtain a more flexible behavior of I(K) at small strikes, we need to keep

within the OU model subclass. However, from expression (2.31) we see that VT is

bounded from below by v0ε(T ), and therefore the asymptotic analysis as K → 0

is meaningful only if v0 = 0.
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Proposition 2.3.3. Consider the OU model (2.23) with v0 = 0, and assume FJ

is continuous. Then, the following holds:

(a) Suppose that FJ(1/x) ∈ R−ρ, with ρ > 0. Then the asymptotic equivalence

(2.15) holds with small strikes index qV = ρT .

(b) Suppose that logFJ(x) ∼ −αx−β as x → 0, with α , β > 0. Then qV = ∞
and I(K)→ 0 as K → 0.

Proof. Part (a). By Karamata’s equivalence (2.18), it holds that LJ(x) = x−ρ`(x),

with ` ∈ R0. Also, recall a result from Korevaar [84], IV.2, stating that if ` ∈ R0

then for any δ > 0, there are positive constants b and B such that

b

(
u+ 1

v + 1

)−δ
≤ `(u)

`(v)
≤ B

(
u+ 1

v + 1

)δ
whenever 0 ≤ v ≤ u <∞ . (2.36)

Then, from (2.33) we obtain that for a ξ > 0, the following holds

lim
x→∞

LV (ξx)

LV (x)
= exp

∫ T

0

log

(
lim
x→∞

LJ (ξε(t)x)

LJ (ε(t)x)

)
dt = ξ−ρT ,

where, to interchange limit and integral, we have applied a dominated convergence

argument based on (2.36). Therefore, LV ∈ R−ρT and the statement follows from

Proposition 2.2.4-(a). As for assertion (b), set r and s as in (2.19) and use (2.33)

to obtain

lim
x→∞

log LV (x)

xr
=

∫ T

0

lim
x→∞

κJ(xε(t))

xr
dt = −s

∫ T

0

ε(t)rdt ,

where, once again, we have used a dominated convergence argument based on the

monotonicity of κJ . The conclusion follows from Proposition 2.2.4-(b).

2.4 Numerical Examples

In this section we consider a selection of positive distributions of the jumps J and

we illustrate how such a choice impacts the associated realized variance smile I(K)

for a fixed maturity T . The numerical examples we provide are based on the OU

subclass (2.23) with v0 = 0, as this specification, in contrast to the full SVJ-v

model, allows for both an upward sloping and a downward sloping behavior of the
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left wing. For the unit-time jump distribution J1, we consider the Gamma, the

Inverse Gamma, and the Generalized Inverse Gaussian laws and we refer to the

corresponding model specifications as the OU-Γ, OU-IΓ and OU-GIG models.

Recall that a Gamma distribution Γ(α, β) has density function fΓ and Laplace

transform LΓ given by

fΓ(x) =
βα

Γ(α)
xα−1e−βx , x ≥ 0

LΓ(u) =

(
1 +

u

β

)−α
, u ≥ −β.

Since 0 ∈ D̊J , Proposition 2.3.1–(b) predicts that in the OU-Γ model, the smile

I(K) is downward sloping to zero as K →∞. Also, we see that LΓ is a regularly

varying function of index −α at infinity. By Proposition 2.3.3–(a) we can conclude

that I(K) → ∞ as K → 0, in accordance to the asymptotic equivalence (2.15)

with index qV = αT .

In the OU-IΓ specification, we choose J1 distributed according to an Inverse

Gamma law IΓ(ν, µ). The density function fIΓ and Laplace transform LIΓ are

given by

fIΓ(x) =
µν

Γ(ν)
x−ν−1e−µ/x , x ≥ 0

LIΓ(u) =
2(µu)ν/2

Γ(ν)
Kν(

√
4µu) , u ≥ 0

where Kν is the modified Bessel function of the second kind. Since fIΓ ∈ R−ν−1,

we see from (2.10) that the corresponding survival function FIΓ ∈ R−ν . Hence,

Proposition 2.3.1–(a) shows that for large strikes, the volatility curve I(K) implied

by the OU-IΓ model follows the asymptotic equivalence (2.4) with pV = ν−1. For

the small strikes behavior, we can use the fact that for large arguments Kν(z) ∼√
π
2z
e−z (see Abramowitz and Stegun [4] p. 378), and show that limu→∞

log LIΓ(u)

u1/2 =

−
√

4µ < 0. Therefore, Proposition 2.3.3–(b), combined with de Bruijn’s Tauberian

Theorem (2.19), implies that I(K)→ 0 as K → 0.

Finally, we consider the OU-GIG specification, where the law of J1 is given by

a Generalized Inverse Gaussian distribution GIG(p, a, b) with density and Laplace

transform given by

fGIG(x) =
(b/a)p

2Kp(ab)
xλ−1e−

1
2(a2x−1+b2x) , x ≥ 0
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LGIG(u) =

(
b2

b2 + 2u

)p/2
Kp(

√
a2(b2 + 2u))

Kp(ab)
, u ≥ −b2/2.

As above, Kp denotes the modified Bessel function of the second kind and it is

immediate to see that limu→∞
log LGIG(u)

u
1
2

< 0. Also, 0 ∈ D̊GIG, and in virtue of

Proposition 2.3.1–(b) and Proposition 2.3.3–(b) we can conclude that I(K) → 0

both at small and at large strikes.

In all the model specifications introduced above, the realized variance call price

C(K) and the associated implied volatility I(K) can be computed by means of

Fourier transform methods. In fact, Carr et al. [34] show that the Laplace transform

LC of the call price C(K) can be expressed as

LC(u) =

∫ ∞
0

e−uKC(K)dK =
LV (u)− 1

u2
+

E[VT ]

u
. (2.37)

Applying a Laplace inversion algorithm to (2.37) allows us to obtain prices of op-

tions on realized variance for a sequence of variance strikes. Figure 2.1 plots implied

volatilities against variance strikes for the three selected models. We consider a ma-

turity of 3 months and we set the parameters of the different jump distributions

so that the mean and the variance are the same across the alternative specifica-

tions. In particular, we take α = 18 and β = 22.8 in the Gamma case, ν = 20

and µ = 15 for the Inverse-Gamma and p = −0.5, a = 3.7697 and b = 4.7749 for

the GIG distribution. The value of λ is the same in all cases and it is equal to 8.

The plots confirm that in the OU-Γ case, the implied volatility of variance smile

is downward-sloping, clearly at odds with the upward-sloping smile observed in

variance markets. In contrast, the OU-IΓ model implies an upward-sloping smile

and finally, in the OU-GIG specification, we observe a frown.

To further support these observations, we investigate the sensitivity of the im-

plied volatility of variance with respect to the parameters of the jump distribution

in Figures 2.2-2.4. To disclose the ceteris paribus effects on the implied volatility,

we change one parameter while keeping any remaining parameters fixed. For each

parameter set, we plot the implied volatility curve against variance strikes. For the

selected jump distributions, we make the common observation that while altering

the parameters of the distribution changes the levels of implied volatility and the

wideness of the smile in variance strikes, the shapes of the implied volatility curves

persist across different parameter values.
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Figure 2.1: Implied volatilities of variance for the OU-Gamma with parameters
α = 18, β = 22.8 (top), OU-InverseGamma with ν = 20, µ = 15 (middle),
and OU-IG with a = 3.7697, b = 4.7749 (bottom). In all cases we take λ = 8,
and v0 = 0 and we obtain the parameters of the different jump specifications by
matching the mean and the variance.
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Figure 2.2: OU-Gamma parameter sensitivities. Base case parameters: α = 18,
β = 22.8, λ = 8, and v0 = 0.
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Figure 2.3: OU-Inverse Gamma parameter sensitivities. Base case parameters: ν =
20, µ = 15, λ = 8, and v0 = 0.
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Figure 2.4: OU-IG parameter sensitivities. Base case parameters: a = 3.7697,
b = 4.7749, λ = 12, and v0 = 0.
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2.5 VIX options

Since 2006 options have traded on CBOE’s VIX index and constitute today a

relatively liquid market of variance derivatives. The VIX index tracks the price

of a portfolio of options on the S&P 500 index (SPX index). As shown by Carr

and Wu [38], VIX squared approximates the conditional risk-neutral expectation

of the realized variance of SPX over the next 30 calendar days. As such, it can be

interpreted as the fair swap rate of a variance swap - an OTC contract in which one

exchanges payments of realized variance against receiving a fixed variance swap

rate.

It is immediate to show that under the general SVJ-v dynamics (2.21), the

VIX squared – the price of future realized variance – is simply given by an affine

transformation of the instantaneous variance

VIX2
T = ET

[
1
τ

∫ T+τ

T
vtdt

]
= avT + b (2.38)

where
a = 1

λτ
(1− e−λτ ),

b = (E[J1]
λ

+ θ)(1− a)
(2.39)

and τ = 30/365.

Extending the previous analysis of realized variance options, we now examine

the impact of the jump-distribution J on the price of VIX options, that is options

with payoff

(FV IX(T, T )−K)+

where FV IX(t, T ) = Et[V IXT ] indicates the VIX future price at time t. Using the

notation of Section 2.2 and the fact that FV IX(T, T ) = V IXT we are interested in

the asymptotic behavior of the volatility curve implied by options with

HT = VIXT =
√
avT + b.

We see from (2.39) that in the SVJ-v framework the VIXT is bounded away from

zero by the quantity b, for any parameter choice and any maturity T . Thus, we

only consider the volatility curve at large strikes K → ∞, as I(K) is not defined

for K → 0.
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Also, recall that the Laplace transform of the instantaneous variance Lv(u, T ) =

E[e−uvT ] is given by

Lv(u, T ) = exp (α(u, T ) + v0β(u, T ) + δ(u, T )) , (2.40)

where the functions α, β and δ satisfy the ODEs

∂

∂t
α = θλβ (2.41)

∂

∂t
β = −λβ +

1

2
σ2β2 , (2.42)

∂

∂t
δ = κJ(−β) , (2.43)

with initial conditions α(u, 0) = δ(u, 0) = 0 and β(u, 0) = −u. Similar to the

realized variance case, a detailed analysis of the ODEs (2.41)–(2.43) reveals the

close connection between the tail of the jump distribution J1 and the tail of the

instantaneous variance vT . The main results are reported in Lemma 2 below, while

the derivations are omitted, as they follow closely the proof of Lemma 1.

Lemma 2. In the SVJ-v model (2.21) the following holds:

(i) If p ≥ 0, then E [Jp1 ] <∞ if and only if E
[
vpT
]
<∞ .

(ii) If FJ ∈ R−ρ with ρ > 0 non integer, then Fv ∈ R−ρ. In the OU subclass

(2.23), the statement holds for arbitrary ρ > 0.

We see immediately that in order to price VIX options in the SVJ-v model, we

need to assume that E
[
J

1/2
1

]
< ∞ . Furthermore, the large strikes Lee’s formula

(2.3) holds with index

pVIX = sup
{
p : E[J

p+1
2

1 ] <∞
}
.

The analogous of Proposition 2.3.1 for VIX smiles at large strikes reads as

follows.

Proposition 2.5.1. In the SVJ-v model (2.21) the following holds:

(a) Suppose that FJ ∈ R−ρ with ρ > 1/2 non integer. Then the large strikes

asymptotic equivalence (2.4) holds with pV IX = 2ρ − 1. In the OU subclass

(2.23), the statement holds for arbitrary ρ > 1/2.
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(b) Suppose that FJ is exponentially dominated. Then pV IX =∞ and I(K)→ 0

as K →∞.

Proof. From (2.38), we see that

FV IX(x) =Fv

(
x2 − b
a

)
.

Elementary properties of regularly varying functions show that if Fv ∈ R−ρ then

FV IX ∈ R−2ρ. Therefore part (a) follows immediately from Lemma 2 and Propo-

sition 2.2.2, (a). As for part (b), inspection of (2.41)–(2.43) shows that FJ is

exponentially dominated if and only if Fv is exponentially dominated, which in

turns implies that FV IX is exponentially dominated. The conclusion follows from

Proposition 2.2.2, (b).

We conclude this section by providing some numerical examples illustrating the

behavior of VIX smiles implied by different jump distributions. We consider the

full SVJ-v specification obtained by augmenting the Heston model with compound

Poisson jumps, i.e.

Jt =

N(t)∑
i=1

Zi, Zi ∼ i.i.d. Z , (2.44)

where N(t) is a Poisson process with intensity ` while Z denotes the positive jump-

size distribution. As mentioned in the introduction, this variance process equipped

with exponentially distributed jumps has been used, e.g. by Sepp [101], and Lian

and Zhu [90], in the attempt to capture the observed upward-sloping skew of VIX

options. Here, besides this specification and the purely diffusive Heston model,

we also consider the case of inverse gamma jumps Z ∼IΓ(ν, µ). Figure 2.5 plots

the implied volatilities against strikes in the three different cases. We consider 3-

months options and we use Heston parameters from Bakshi et al. [11] v0 = 0.0348,

λ = 1.15, θ = 0.0348, σ = 0.39, obtained by calibration to out-of-the-money

options on the S&P500 index. One observes that, when using parameters fitted to

equity option quotes, the VIX implied volatility skew is downward-sloping. Next,

we augment the Heston model with exponential jump sizes Z ∼ Γ(1, β) with mean

1/β = 0.3429. The intensity is set to ` = 1.5. Once again, we obtain a downward-

sloping skew.
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Figure 2.5: Implied volatilities of VIX options for: the Heston model with v0 =
0.0348, λ = 1.15, θ = 0.0348, σ = 0.39 (top), the SVJ-v model with exponential
jumps with ` = 1.5 and 1/β = 0.3429 (middle) and the SVJ-v model with Inverse
Gamma jumps with ` = 1.5, ν = 4.5 and µ = 1.2 (bottom). The jump-parameters
are chosen so that E[Z] is the same in both jump specifications.
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However, if we maintain the same diffusive component, the same intensity level

`, but we substitute the jump size with an Inverse Gamma law Z ∼IΓ(ν, µ), we

observe a dramatic change in the shape of the VIX implied volatility. Specifically,

this leads to an upward-sloping skew as shown in Figure 2.5. The Inverse Gamma

jump parameters are ν = 4.5 and µ = 1.2 and they have been obtained so that

the first moment of Z is the same as in the exponential case.

2.6 Conclusions

We have considered options on realized variance and VIX options in the SVJ-v

model, a tractable affine stochastic volatility model that generalizes the Heston [77]

model by augmenting it with jumps in the instantaneous variance. The model al-

lowed us to isolate the unique impact of the jump distribution and we have shown

that this has a profound effect on the characteristics and shape of the implied

volatility of variance smile. We provided sufficient conditions for the asymptotic

behavior of the implied volatility of variance for small and large strikes. In par-

ticular, we showed that by selecting alternative jump distributions, one obtains

fundamentally different shapes of the implied volatility smile. Some distributions

of jumps predict implied volatilities of variance that are clearly at odds with the

upward-sloping volatility skew observed in variance markets.

2.7 Appendix

Proof of Lemma 1 part (i) We start by recalling a few basic facts relating

the (possibly infinite) moments E[Hp], p > 0 of a non negative random variable

H to its Laplace transform LH . Fix p > 0, n ∈ Z+ and r so that n = p + r with

0 < r < 1. Then the moments can be expressed as follows

E[Hn] = (−1)nL (n)
H (0+) (2.45)

and

E[Hp] =
(−1)n

Γ(r)

∫ ∞
0

ur−1L (n)
H (u)du ,
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where we have employed the usual notation f (n)(u) = dn

dun
f . In particular, it holds

that

E[Hp] <∞ ⇐⇒ (−1)n
∫ u0

0

ur−1L (n)
H (u)du < +∞ (2.46)

for an arbitrary u0 > 0. Finally, recall that the n-derivative L (n)
H can be expressed

in terms of Bell’s polynomials Bn,k(x1, x2, . . . , xn−k+1) as follows

L (n)
H = LH ·

n∑
k=1

Bn,k

(
κ

(1)
H , κ

(2)
H , . . . , κ

(n−k+1)
H

)
, (2.47)

where κH(u) = log LH(u), and

Bn,k(x1, x2, . . . ) =
∑

j1+j2+···=k
j1+2j2+···=n

n!

j1!j2! · · ·

(x1

1!

)j1 (x2

2!

)j2
· · · . (2.48)

Notice that, Bn,1(x1, x2, . . . ) = xn and Bn,n(x1, x2, . . . ) = xn1 , and if (−1)nκ
(n)
H ≥ 0

for any n ≥ 1, then also

(−1)nBn,k

(
κ

(1)
H , κ

(2)
H . . .

)
≥ 0 , for all 1 ≤ k ≤ n . (2.49)

Consider now the unit time law J1 of the jump process. Differentiating expres-

sion (2.22) we obtain

(−1)nκ
(n)
J (u) =

∫ ∞
0

xne−uxνJ(dx) ,

for any n ≥ 1. So, from (2.45), (2.47), (2.49) it follows that

E[Jn1 ] <∞ ⇐⇒
∫ ∞

0

xnνJ(dx) <∞ (2.50)

and, for a non integer p > 0,

E[Jp1 ] <∞ ⇐⇒ (−1)n
∫ u0

0

ur−1κ
(n)
J (u)du <∞ ,

⇐⇒
∫ ∞

0

xn−rγ(xu0; r)νJ(dx) <∞ , (2.51)

for a u0 > 0, where γ(x; r) denotes the incomplete Gamma function γ(x; r) =∫ x
0
qr−1e−qdq. We now apply similar arguments to moments of the integrated vari-

ance VT . First differentiate expressions (2.24) and (2.25)–(2.27) to obtain that

κ
(n)
V (u, T ) = α(n)(u, T ) + v0β

(n)(u, T ) + δ(n)(u, T ) , q > 0 , (2.52)
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where β(1) , β(2) . . . solve the ODEs

∂

∂t
β(1) = −λβ(1) + σ2ββ(1) − 1

T
, (2.53)

∂

∂t
β(n) = −λβ(n) +

1

2
σ2

n∑
i=0

(
n

i

)
β(i)β(n−i) n ≥ 2 , (2.54)

with initial condition β(1)(u, 0) = β(2)(u, 0) = · · · = 0, while α(n), δ(n) solve

∂

∂t
α(n) = θλβ(n) (2.55)

∂

∂t
δ(n) =

∂n

∂un
(κJ(−β)) , (2.56)

with α(n)(u, 0) = δ(n)(u, 0) = 0 for all n ≥ 1. Since β ≤ 0, from (2.53)–(2.54) it

follows that (−1)nβ(n) ≥ 0 and (−1)nα(n) ≥ 0 for any n ≥ 1. As for δ(n), set

L(u, t, x) = eβ(u,t)x

and integrate (2.56) to obtain

δ(n)(u, T ) =

∫ T

0

∫ ∞
0

L(n)(u, t, x)νJ(dx)dt

=
n∑
k=1

∫ T

0

∫ ∞
0

xkL(u, t, x)Bn,k

(
β(1)(u, t) , β(2)(u, t) . . .

)
νJ(dx)dt ,

(2.57)

where, similar to (2.47), we have expressed the n-derivative L(n) in terms of Bell’s

polynomials. Since (−1)nβ(n) ≥ 0 for all k ≥ 1, observation (2.49) implies that

(−1)nL(n), (−1)nδ(n), and (−1)nκ
(n)
V are all non negative functions. In view of

(2.45), (2.47), we obtain that

E
[
V n
T

]
<∞ ⇐⇒ (−1)nκ

(n)
V (0+, T ) <∞ ⇐⇒ (−1)nδ(n)(0+, T ) <∞ ,

where the last equivalence follows from observing, e.g., from (2.28)–(2.29), that

both α(u, T ) and β(u, T ) are finite and infinitely differentiable in an open neigh-

borhood of u = 0. Expression (2.57) shows that

(−1)nδ(n)(0+, T ) =
n∑
k=1

∫ ∞
0

xkνJ(dx) ·
∫ T

0

(−1)nBn,k

(
β(1)(0, t) , β(2)(0, t) . . .

)
dt,
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and we see that for the case of n integer, statement (i) follows from (2.50).

Consider now E
[
V p
T

]
for non-integer p. Based on similar arguments as above,

the equivalence (2.46) shows that

E
[
V p
T

]
<∞ ⇐⇒ (−1)n

∫ u0

0

ur−1κ
(n)
V (u, T )du <∞

⇐⇒ (−1)n
∫ u0

0

ur−1δ(n)(u, T )du <∞ . (2.58)

Next, a simple inspection of the ODEs (2.26), (2.53), and (2.54) shows that for all

(u, t) ∈ R2
+, the functions β, β(1) , . . . , β(n) satisfy the following bounds

−u ε(t) ≤ β(u, t) ≤ −u
(

1− σ2

2λ2T
u

)
ε(t) , (2.59)(

1− σ2

λ2T
u

)
ε(t) ≤ (−1)β(1)(u, t) ≤ ε(t) , (2.60)

0 ≤ (−1)nβ(n)(u, t) ≤ b , for all n ≥ 1 , (2.61)

where ε(t) is the function given in (2.32), and b > 0 is a large enough constant. In

particular, the upper bounds in (2.61) imply that we can find a b̃ > 0 large enough

such that

(−1)nBn,k

(
β(1)(u, t) , β(2)(u, t) , . . .

)
≤ b̃ , ∀(u, t) ∈ R2

+ ,

for all 1 ≤ k ≤ n. Furthermore, choosing u0 <
2λ2T
σ2 and setting b0 = u0

ε(T )
T

, from

(2.59) it follows that

β(u, t) ≤ −ub0t ∀(u, t) ∈ [0, u0]× [0, T ] .

Substituting this estimates in (2.57) we obtain that

(−1)n
∫ u0

0

ur−1δ(n)(u, T )du ≤ b̃

n∑
k=1

∫ ∞
0

∫ T

0

∫ u0

0

xkur−1e−xb0tu du dt νJ(dx)

=
b̃

br0

n∑
k=1

∫ ∞
0

∫ T

0

∫ xb0tu0

0

xk−rt−rζr−1e−ζdζ dt νJ(dx)

≤ b̃

br0

n∑
k=1

(∫ T

0

t−rdt

)∫ ∞
0

xk−r
∫ xb0Tu0

0

ζr−1e−ζdζ νJ(dx)

=
b̃T 1−r

(1− r)br0

n∑
k=1

∫ ∞
0

xk−rγ(xb0Tu0; r) νJ(dx) ,
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and in view of (2.51), (2.58) we can conclude that E[Jp1 ] <∞ implies E
[
V p
T

]
<∞ .

For the converse implication, notice that (2.59) implies

β(u, t) ≥ − u

λT
∀(u, t) ∈ R2

+ ,

choose u0 <
λ2T
σ2 and set a0 = u0

ε(T )
T

, so (2.60) implies

(−1)β(1)(u, t) ≥ a0t ∀(u, t) ∈ [0, u0]× [0, T ] .

Substituting these estimate in (2.57) we obtain

(−1)n
∫ u0

0

ur−1δ(n)(u, T )du ≥ an0

∫ ∞
0

∫ T

0

∫ u0

0

xntnur−1e−xu/λT du dt νJ(dx)

=
an0
λr
T n+1−r

n+ 1

∫ ∞
0

∫ xu0/Tλ

0

xn−rζr−1e−ζdζ νJ(dx)

=
an0
λr
T n+1−r

n+ 1

∫ ∞
0

xn−rγ(xu0/Tλ; r) νJ(dx) ,

and from (2.51)–(2.58) we see that E
[
V p
T

]
<∞ implies E[Jp1 ] <∞, which concludes

the proof of part (i).

Proof of Lemma 1 part (ii) We start by proving the statement for the OU

subclass (2.23). First, recall that for a positive and infinitely divisible distribution

H with Lévy measure νH it holds that

FH(x) ∈ R−ρ if and only if νH(x,∞) ∈ R−ρ (2.62)

and in this case FH(x) ∼ νH(x,∞). See, e.g., Remark 25.14 in Sato [99]. Next,

from (2.33) we see that

κV (u, T ) = −uε(T )v0 +

∫ T

0

∫ ∞
0

(
e−uε(t)x − 1

)
νJ(dx) dt

= −uε(T )v0 +

∫ ∞
0

(
e−ux − 1

)
νV (dx) ,

where νV is the measure defined by

νV (x,∞) =

∫ T

0

νJ(x/ε(t),∞)dt , for x > 0 . (2.63)
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Thus, the distribution of VT is infinitely divisible with Lévy measure νV . In view

of (2.62), we proceed to show that νJ(x,∞) ∈ R−ρ implies νV (x,∞) ∈ R−ρ. In

(2.63), use (2.2) and apply the change of variable z := x/ε(t) in (2.63), to show

that for ξ > 0, νV (ξx,∞) takes the form

νV (ξx,∞) = ξ−ρxT

∫ ∞
x/ε(T )

`(ξz)
z−ρ−1

z − λTx
dz.

Since `(ξz)/`(z)→ 1 as z →∞, for a given ε > 0 we can find z∗ such that

(1− ε) z−ρ−1

z − λTx
`(z) ≤ z−ρ−1

z − λTx
`(ξz) ≤ (1 + ε)

z−ρ−1

z − λTx
`(z)

holds for all z ≥ x/ε(T ) ≥ z∗. So, integrating the chain of inequalities above, we

see that

(1− ε)ξ−ρνV (x,∞) ≤ νV (ξx,∞) ≤ (1 + ε)ξ−ρ−1νV (x,∞)

for any x ≥ x∗ = z∗ε(T ), and we can conclude that νV (ξx,∞)/νV (x,∞)→ ξ−ρ as

x→∞.

Consider now the full SVJ-v specification (2.21) and assume FJ ∈ R−ρ for a non

integer ρ > 0. In view of the Tauberian equivalence (2.12), we aim to show that

L (n)
V (ξu, T )

L (n)
V (u, T )

→ ξ−r as u→ 0 , (2.64)

for all ξ > 0, where n ∈ Z+, 0 < r < 1 and n = ρ + r. Notice that (2.9) implies

that
∫∞

0
xkνJ(dx) < ∞ for k = 1, . . . , n − 1. Thus, using (2.47) and expressions

(2.52), (2.57), we can represent (−1)nL (n)
V as follows

(−1)nL (n)
V (u, T ) = LV (u, T ) GV (u, T ) + `V (u, T ) (2.65)

where

GV (u, T ) =

∫ T

0

∫ ∞
0

xn
(
−β(1)(u, t)

)n
exβ(u,t)νJ(dx)dt , (2.66)

while `V is such that `V (0+, T ) <∞. Therefore, (2.64) is equivalent to

GV (ξu, T )

GV (u, T )
→ ξ−r as u→ 0 . (2.67)
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To show the above, fix ξ > 0, consider an arbitrary 0 < ε < 1, and choose

uε < min(1, ξ−1) σ2

λ2T
ε. Then (2.59), (2.60) imply that, for all u ≤ uε, the following

holds

(1− ε) GOU(u, T ) ≤ GV (u, T ) ≤ GOU (u(1− ε), T )

(1− ε) GOU(ξu, T ) ≤ GV (ξu, T ) ≤ GOU (ξu(1− ε), T )

where

GOU(u, T ) =

∫ T

0

∫ ∞
0

xnε(t)ne−uε(t)xνJ(dx)dt .

Notice that GOU corresponds to GV defined in (2.65)–(2.66) when VT is specified

in the OU model. Therefore, GOU satisfies (2.67) for any ξ > 0, implying that

(1− ε) ξ−r ≤ lim
u→0

GV (ξu, T )

GV (u, T )
≤ 1

(1− ε)r+1
ξ−r .

Since ε is arbitrary, we see that GV satisfies (2.67), which concludes the proof of

part (ii).
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Chapter 3

Pricing Realized Variance Options

using Laplace transforms: a

comparison of inversion methods

51





Pricing Realized Variance Options using

Laplace transforms: a comparison of

inversion methods

Camilla Pisani
Dept. of Economics and

Business Economics,
Aarhus University

Abstract

We provide a description of different algorithms for the inversion of

Laplace transforms and we analyze how they perform when applied to the

computation of prices of realized variance options. The model we consider

is a generalization of the Heston model where the dynamics of the instan-

taneous variance are augmented with cPp jumps, the jump size follows an

Inverse Gamma law. Under this framework, an explicit expression of the

Laplace transform of the realized variance is available and therefore Laplace

inversion techniques can be easily applied.

However, we show that when using a formulation of the Laplace trans-

form which leads to discontinuities, wrong option prices may be obtained.

Hence, attention must be paid before applying this pricing technique.

3.1 Introduction

Numerical inversion of Laplace transforms (see Bellman and Roth [16] for an

overview of Laplace transforms and their properties) appears in various fields other

than finance such as e.g., probability, physics, queueing theory and control engi-

neering. Due to numerical errors stemming in part from discontinuities in the

Laplace function or its derivatives, the numerical computation of the inverse of a

Laplace transform is not an easy task. This problem, described by Kendall [83] as
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the ”Laplace curtain obscuring the understanding of system behaviour”, has been

addressed by several authors, among others Epstein and Schotland [54] and Davis

and Martin [48].

The purpose of this paper is to provide a review of some Laplace inversion

algorithms and show numerical issues that might appear when these algorithms

are used for pricing of call options on the realized variance of an asset.

Realized variance options and in general, volatility derivatives such as VIX

options have recently gained great popularity. It is therefore important to find

efficient methods for their pricing. Classical Monte Carlo methods appear to be

quite easy to implement and reliable enough, as shown by the fact that they are

currently spread among researchers and practitioners. However, they can be quite

time consuming. This is why we need to look for alternative pricing methods. The

starting point of our analysis will be the formula recently proposed in Carr et al.

[34], expressing the Laplace transform of a call function on the realized variance

VT in terms of the Laplace transform of the realized variance itself:

LC(u) =

∫ ∞
0

e−uKC(K)dK =
LV (u)− 1

u2
+
V0

u
. (3.1)

As a consequence of the equation above, if an explicit expression of LV exists, call

prices can be found by applying some inversion algorithm to LC . However, when

computing option prices by means of equation (3.1) several numerical issues may

appear.

In this paper, we focus on a generalization of the Heston model where the

dynamics of the instantaneous variance are augmented with compound Poisson

jumps. In particular, we consider jump sizes following an Inverse Gamma density

as this has proved to be capable of reproducing the upward sloping volatility skew

of realized variance and VIX options (see Chapter 2). In this framework, we test

the performance of some of the most popular algorithms available in the literature,

comparing the results with those obtained through Monte Carlo simulations. As

we shall see under the considered model, the realized variance is the same as the

integrated variance. This implies a further error component in Monte Carlo simu-

lations, due to the approximation of an integral as a finite sum. However, pricing

through Monte Carlo simulations is not as sensitive to the lack of smoothness of

the integrand as the inversion algorithms. Therefore, it can be assumed to be a

good comparison method. A similar analysis in the context of Asian options pric-
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ing can be found in Fu et al. [59] and Craddock et al. [44], and indeed options on

the integrated variance of an asset can be considered continuous arithmetic Asian

options on the instantaneous variance.

Finally, we mention the use of the Laplace transform and its inversion in pricing

of other financial derivatives such as double barrier options, as in Geman and Yor

[65], Pelsser [97] and Labart and Lelong [85], interest rate derivatives as in Leblanc

and Scaillet [88] and credit risk as in Di Graziano and Rogers [49].

The rest of the paper is organized as follows: Section 3.2 gives an overview of the

inversion algorithms we will test, namely the Bromwich-trapezoidal rule, Weeks’

algorithm and Iseger’s algorithm. Section 3.3 describes the framework we work on

and in particular the model we consider, i.e., the SVJ-v model with Inverse Gamma

jumps in the instantaneous variance. Section 3.4 provides numerical illustrations.

Section 3.5 points to a possible extension of the model considered. Finally, Section

3.6 concludes.

3.2 A survey of inversion methods

In this section, we recapitulate some algorithms for the inversion of Laplace trans-

forms that we will later apply to the specific case of pricing of call options on the

realized variance VT . They are all based on some expansion of f in terms of orthog-

onal functions with coefficients that are written in terms of the Laplace transform

of f . The algorithms we consider are: the Bromwich-trapezoidal rule, Weeks’ al-

gorithm and Iseger’s algorithm. These allow to show some of the numerical issues

that might appear when applying Laplace inversion techniques in option pricing.

Other methods include the Gaver-Stehfest algorithm, [64] and [103], which

is based on combinations of Gaver functionals and the method in Talbot [105],

which is based on a contour deformation technique. For a comprehensive overview

of Laplace inversion methods we refer to Cohen [41] and finally to Chapter 7 in

Fusai and Roncoroni [60] where applications to option pricing are also shown.

Notation

– R+ indicates the non-negative real line

– Given f ∈ R+ we denote Lp[0,∞) =
{
f s.t.

∫∞
0
|f(x)|pdx <∞

}
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– Given f ∈ R+ we denote its Laplace transform by Lf =
∫∞

0
e−stf(t)dt

– i =
√
−1 denotes the imaginary unit

The Bromwich integral

The first method we describe is based on an application of the trapezoidal rule

to the Bromwich inversion integral, a formula expressing a positive real valued

function f as an integral involving its Laplace transform. This leads to an approx-

imation of f as a trigonometric sum. A main reference for a full description of this

algorithm is Abate et al. [3] where applications in the field of queuing theory are

provided. The obtained algorithm can be considered a variant of the Fourier-series

method (we refer again to Abate et al. [3] for an overview on the topic).

Theorem 3.2.1 (The Bromwich inversion integral). Let f be a real function on

R+, with Laplace transform Lf and b any real number to the right of all singular-

ities of Lf . For any t > 0 the three following equivalent formulae hold:

f(t) =
1

2πi

∫ b+i∞

b−i∞
estLf (s)ds (3.2)

f(t) =
2ebt

π

∫ ∞
0

Real(Lf (b+ is))cos(st)ds (3.3)

f(t) =
−2ebt

π

∫ ∞
0

Im(Lf (b+ is))sen(st)ds (3.4)

where the integrals are intended to be zero for t < 0.

Proof. Equation (3.2) is a classical formula for the inversion of Laplace transforms,

see e.g., Doetsch [50] for details. Formulae (3.3) and (3.4) can be easily recovered by

the elementary equality eist = cos(st)+isen(st) (see Abate et al. [3] for details).

The problem of computing the inverse of Lf is therefore reduced to the com-

putation of an integral. Different approaches can be carried out using various

numerical integration techniques (see e.g., Smyth [102] for a survey on the topic).

In what follows we will focus on equation (3.3) which, together with equation

(3.4), involve integration with respect to real numbers, and not complex numbers

as equation (3.2). A possible approach in order to approximate the integral above
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consists in the use of the trapezoidal rule leading to the formula below which we

denominate the Bromwich-trapezoidal rule

f(t) ∼ f̃(t) =
hebt

π
Lf (b) +

2hebt

π

∞∑
n=1

Real(Lf (b+ inh))cos(nht), t > 0 (3.5)

where h is a chosen step size. An analogous formula in terms of sen(u) rather than

cos(u) can be easily derived.

When applying the approximation in equation (3.5), three main sources of error

arise: a discretization error, a truncation error, and finally a roundoff error. The

first error is due to the application of the trapezoidal rule, or in other words, to

the approximation of the integral in equation (3.3) with a sum. It can be shown

however that if |f(x)| ≤ C for all x > t+ 2π/h then

|f(t)− f̃(t)| ≤ Ce−2πb/h

1− e−2πb/h
. (3.6)

In our case, f = C(K) is bounded by a constant if VT has finite first moment. As

a consequence, we can control the discretization error by increasing b/h.

Once we have control of the discretization error, we need to compute the final

summation in equation (3.5). Hence, we need to approximate the infinite series

with a finite sum (leading to truncation errors), and compute the single terms.

When performing the last task, roundoff errors appear due to the computation of

elementary functions such as addition and multiplication.

In order to bound these last two sources of errors and therefore improve the

final convergence of the approximation, different acceleration procedures can be

applied. Abate et al. [2] suggest the Euler acceleration technique according to

which f(t) is approximated as

f(t) ∼ f̃ em,n(t) =
m∑
k=0

(
m

k

)
2−msn+k(t) (3.7)

57



where

sn(t) =
n∑
k=0

(−1)k
eA/2L

2Lt
bk(t) (3.8)

b0(t) = Lf (A/2Lt) + 2
l∑

j=1

Real[Lf (A/2Lt+ ijπ/Lt)eijπ/L] (3.9)

bk(t) = 2
l∑

j=1

Real[Lf (A/2Lt+ ijπ/Lt+ ikπ/t)eijπ/L], k ≥ 1 (3.10)

This is obtained by letting h = π/Lt and b = A/2Lt be a function of t rather

than a constant, and by taking the average of sn, sn+1, . . . , sn+m, weighted by a

binomial probability distribution with parameters m and p = 1/2.

The main advantage of the Euler acceleration technique is that a smaller num-

ber of terms in the summation is required with respect to the case without ac-

celeration. The parameters A, L, m, n play a fundamental role in the outcome of

the approximation. In particular, A allows control of the discretization error, and

equation (3.6) can be reformulated as

|f(t)− f̃ em,n(t)| ≤ Ce−A

1− e−A
. (3.11)

Finally, when applying the algorithm in practice, a good test for the convergence is

to compute f̃ em,n(t) for two different couples (A,L). In case the values obtained are

not close enough to each other, an increment of n is advised. Also, an increment of

L can help control roundoff errors. We refer to Abate et al. [2] for a comprehensive

discussion about computational errors when applying equation (3.5).

Weeks’ algorithm

A different approach involving an expansion as a Laguerre-series can be found in

Abate et al. [1]. It is based on the property of the Laguerre functions to be an

orthonormal basis for the space L2[0,∞).

Theorem 3.2.2 (Laguerre-series representation). Let f be a real function on R+,

with Laplace transform Lf and assume f ∈ L2[0,∞). Then

f(t) =
∞∑
n=1

qnln(t), t ≥ 0 (3.12)
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where ln(t) are the Laguerre functions

ln(t) = e−t/2Lagn(t) (3.13)

associated to the Laguerre polynomials

Lagn(t) =
n∑
k=0

(
n

k

)
(−t)k

k!
(3.14)

and qn =
∫∞

0
f(t)ln(t)dt are the Laguerre coefficients which can be computed from

the Laguerre generating function given below

Q(z) =
∞∑
n=1

qnz
n = (1− z)−1Lf

(
1 + z

2(1− z)

)
. (3.15)

The idea of inverting Laplace transforms through Laguerre series representa-

tions first appeared in Tricomi [106] (see also Gabutti and Lepora [61] and Widder

[108]). However, complete algorithms for its implementation were developed later

on in Weeks [107] and the procedure is nowadays known as ”Week’s algorithm”.

Before proceeding, we recall that the Laguerre functions in (3.13) can be com-

puted by recursion as follows:

l0(t) = e−t/2,

l1(t) = (1− t)e−t/2,

ln(t) =

(
2n− 1− t

n

)
ln−1(t)−

(
n− 1

n

)
ln−2(t).

Two issues appear when using the algorithm above: the computation of the

coefficients qn from Lf and the truncation of the summation in equation (3.15).

The first problem is solved in Abate et al. [1] through a computation formula based

on the modification of the Lattice-Poisson algorithm in Choudhury et al. [40]:

qn ∼ q̃n =
1

2`nrn

`−1∑
j=0

n−1∑
k=−n

(−1)jexp(−πik/`)Q(reπi(j+`k)/n`) (3.16)

where 0 < r < 1 is the radius of a circle about the origin on which Q(z) is analytic.

Boundedness of the coefficients qn grants boundedness of the error ea = q̃n−qn, also
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called aliasing error, which corresponds to the discretization error when applying

formula (3.5). It can be proved that if |qn+2jln/qn| ≤ C then

|ea/qn| ≤ Cr2`n/(1− r2`n) ≈ Cr2`n.

The number r2l can therefore be chosen in order to control the error ea. Usually

` = 1 and r = (0.1)4/n are sufficient for a good approximation. However, different

values of ` can be used as an accuracy test.

Regarding the second issue, which already appeared under the name of trunca-

tion error when using (3.5), this is related to the rate of convergence to zero of the

coefficients qn. This in turn depends on the behaviour of the Laplace transform

at infinity and on the smoothness of the function f and its derivatives. In order

to overcome numerical issues due to lack of smoothness, a scaling technique can

be applied. This consists in considering the function fξ,φ = e−ξtf(t/φ), applying

the algorithm to fξ,φ and then recovering the original function f from the equal-

ity f(t) = eξφtfξ,φ(bt). This is possible by observing that the Laguerre generating

function of the scaled function is

Qfξ,φ(z) =
∞∑
n=1

qξ,φn zn = φ(1− z)−1Lf

(
φ(1 + z)

2(1− z)
+ φξ

)
. (3.17)

The presence of the parameter ξ allows elimination of singularities in zero, whereas

φ can potentially help with singularities at infinity. Both parameters can also

work as accuracy check by applying the algorithm for different couples (φ, ξ) and

comparing the results obtained.

Finally, additional roundoff errors can occur when computing the coefficients qn

through equation (3.16). Different techniques can be applied in order to overcome

this problem, depending on the rate of convergence of qn to zero (see Abate et al.

[2] for further details).

Remark 3.2.3 (A conclusive remark on the applicability of the Laguerre expan-

sion to C(K)). By standard calculations∫ ∞
0

C(K)2dK ≤ E[V 3
T ]

3

from which it is evident that if E[V 3
T ] < +∞ then C(K) ∈ L2[0,∞), and it is

therefore possible to apply the Laguerre-series expansion. On the other hand, also in
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the case when C(K) is not initially integrable, it is usually possible to pre-multiply

it by a damping factor ξ∗, in a similar way as the scaling technique above, and

apply the Laguerre representation to the corresponding integrable function C∗(K) =

e−ξ
∗tC(K) whose Laplace transform is given by L ∗(s) = L (s+ ξ∗).

Remark 3.2.4. Giunta et al. [66] find the optimal value for φ in terms of the

singularities of the Laplace transform L . However, when numerically implement-

ing the algorithm further discontinuities may appear, as it will be shown in the

numerical illustrations that follow.

Iseger’s algorithm

In this subsection we present the algorithm in Iseger [79] which is based on the

Poisson summation formula and an application of the Gaussian quadrature rule.

This algorithm was recently applied in the case of pricing of realized variance

options by Drimus [51]. We finally refer to Iseger [80] where a generalization of the

algorithm working for functions defined on the entire real line is proposed.

Theorem 3.2.5 (The Poisson summation formula). Let f be a real function on

R+, with Laplace transform Lf , f ∈ L1[0,∞), and f of bounded variation. Then

for any t > 0 and for any v ∈ [0, 1), it holds:

∞∑
k=−∞

Lf (a+ 2πi(k + v)) =
∞∑
k=0

e−ake−i2πkvf(k) (3.18)

where a ∈ R is called damping factor.

Proof. This is a classical result of Fourier analysis, see e.g., Stein and Weiss [104].

The idea behind the algorithm is to re-write the left hand side of equation

(3.18) as an inner product and then approximate it with a Gaussian quadrature

rule. Further manipulations lead to the following algorithm:

given n, M2, a and M , with M power of 2 define

f̂jk = Re

[
Lf

(
a+ iλj + 2iπk

M2

∆

)]
, k = 0, 1, . . . ,M2, j = 1, 2, . . . , n/2 (3.19)
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and subsequently

f̂0 =
1

∆

n/2∑
j=1

βj(f̂j0 + f̂jM2)

f̂k =
2

∆

n/2∑
j=1

βj f̂jk

with coefficients as in Appendix A in Iseger [79]. Then for l = 0, 1, . . . ,M − 1, an

approximation of f is given by

f(l∆) ∼ f̃a(l) =
eal

M2

M2−1∑
k=0

f̂kcos

(
2πlk

M2

)
. (3.20)

The algorithm therefore allows the evaluation of the function f on a regular grid of

points 0,∆, . . . (M−1)∆, or in other words, it allows us to evaluate the call function

C(K) on a regular grid of strikes. Regarding the parameters that appear in the

algorithm, Iseger [79] suggests the choice n = 16, M2 = 8M , a = 44/M2, whereas

M depends upon the number of points we want to evaluate the function on. Finally,

the parameter M2 can be used in order to find an equilibrium between running

time and accuracy of the algorithm. In particular, decreasing M2 accelerates the

algorithm but at the same time reduces the precision of the results.

Remark 3.2.6 (A conclusive remark on the applicability of the Poisson summa-

tion formula and consequently of Iseger’s algorithm). C(K), being a monotone

(decreasing) function, is of bounded variation. Moreover by standard calculations∫ ∞
0

|C(K)|dK ≤ E[V 2
T ]

2

from which it is evident that if E[V 2
T ] < +∞ then C(K) ∈ L1[0,∞).

3.3 A test model

We consider the SVJ-v model where the square root dynamics of the Heston [77]

model are augmented with jumps in the instantaneous variance. Specifically, we

consider as jumps compound Poisson processes where the jump size follows an

Inverse Gamma law. Inverse Gamma densities have been proved to be able to
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reproduce the upward-sloping volatility skew exhibited by volatility derivatives

(see Chapter 2). The assumption of no jumps in the log asset price is made in

order to simplify computations, since under these hypotheses the realized variance

of the asset reduces to its integrated variance. The considered model will allow us

to show some of the issues that arise when performing inversion of the Laplace

transform in equation (3.1). For completeness we mention the case with jumps

both in the log-price and in the instantaneous variance in Section 3.5.

Without loss of generality, we assume zero interest rates and dividend yields.

We consider a filtered probability space (Ω,F, {F}t≥0,Q) where {F}t≥0 is a filtra-

tion the price process St is adapted to and Q is a pricing measure. We assume

that the risk-neutral dynamics of the log-price Xt = log(St) and its instantaneous

variance vt are given by

dXt = −1
2
vtdt+

√
vtdWt

dvt = λ(θ − vt)dt+ σ
√
vtdBt + dJt

(3.21)

where the processes W and B are standard Brownian motions with correlation

parameter ρ, λ, θ and σ are non-negative constants, and Jv is a compound Poisson

process

Jv =

N(t)∑
i=1

Zi, Zi ∼ i.i.d. Z (3.22)

with N(t) Poisson process with intensity l. The jump size Z follows an Inverse

Gamma law IΓ(ν, µ) with density

fIΓ(x) =
µν

Γ(ν)
x−ν−1e−µ/x1x≥0

and Laplace transform

LZ(u) =
2(µu)ν/2

Γ(ν)
Kν(

√
4µu)

where Kν is the modified Bessel function of the second kind.

We will focus on options on the realized variance of Xt. Given a time interval

[0, T ] and a grid 0 = t0 < t1 < · · · < tN = T on it, we define realized variance over

[0, T ]

RVN =
N∑
n=1

(Xtn −Xtn−1)2.
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RVN can therefore be considered a measure of the variation in the price realized

over the time interval [0, T ]. The realized variance is often approximated by the

quadratic variation [X]T of the log-price

[X]T = lim
Π→0

N∑
n=1

(Xtn −Xtn−1)2.

This is justified by the fact that the realized variance converges to [X]T as the

mesh-size of the time-grid, Π = supn=1,...,N(tn− tn−1), goes to zero. This is proved

to work quite well in practice when considering daily data (see e.g., Broadie and

Jain [31]). We will adopt this assumption and indicate with the term of realized

variance its continuous-time limit given by the quadratic variation. Under the

dynamics in (3.21), the (annualized) realized variance reduces to the (annualized)

integrated variance

VT =
1

T

∫ T

0

vtdt, (3.23)

which is more tractable from a mathematical point of view. We refer to Sepp [100]

for a description of realized variance options under the Heston model with jumps.

We also suggest Carr and Lee [37], Drimus [51], [52], Fatone et al. [57] and Kallsen

[82] as further references on this topic.

An explicit expression of the Laplace transform of VT under the dynamics in

(3.21) is available. Indeed, denote by LZ(u) = E[e−uZ ] the Laplace transform of

the jump size Z and by

κJ(u) = logE[e−uJ1 ] = l(LZ(u)− 1) (3.24)

the cumulant exponent of the jump process J . The Laplace transform of VT is then

given by

LVT (u) = E[e−uVT ] = eα1(u,T )+β1(u,T ) v0 , u ≥ 0 (3.25)

with functions α1(u, t) and β1(u, t) as below

β1(u, t) = 1−e−γ(u)t

c1(u)+d1(u)e−γ(u)t

α1(u, t) = −2λθ
σ2 log c1(u)+d1(u)e−γ(u)t

c1(u)+d1(u)
+ λθt

c1(u)
+
∫ t

0
κJ(−β1(u, s))ds

and c1(u) = λ+γ(u)
−2u/T

, d1(u) = λ−γ(u)
2u/T

and γ(u) =
√
λ2 + 2σ2u/T (see Duffie et al.

[53] for details). We can therefore apply equation (3.1) and recover call prices by

inversion algorithms.
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3.4 Numerical experiments

The aim of this section is to test how the different algorithms presented in Section

3.2 perform when applied to pricing of call options on the realized variance.

Although equation (3.1) does not seem to involve any complex number, all the

previous algorithms for inverting Laplace transforms do fall in the set of complex

numbers. This is because we actually need to invert equation (3.1) in order to

recover the function C(K). Going into the complex number set can cause discon-

tinuities leading to wrong option prices, in a similar way as already pointed out in

Albrecher et al. [6] and Lord and Kahl [92]. However, their analysis is mainly re-

stricted to the Heston model with applications to pricing of equity options, whereas

here we consider a case with jumps in the instantaneous variance, with focus on

realized variance options. Specifically, we consider jump sizes following an Inverse

Gamma density which leads to further discontinuities because of the presence, in

the corresponding Laplace transform, of Bessel functions combined with the square

root.

We compare the results from the different inversion algorithms with those ob-

tained from Monte Carlo simulations. Prices under the risk-neutral probability

measure Q can be computed through the usual formula

C(K) = E[(VT −K)+] ∼ 1

Q

Q∑
q=1

(V q
T −K)+ (3.26)

where {V q
T }q=1,...Q are Q different simulations of VT (usually Q = 105 or 106 is

enough to obtain good approximations). In order to simulate VT , we first need to

simulate a path of vT and then approximate the integral in equation (3.23) with

a finite sum. A path of the instantaneous variance vt can be obtained for example

by applying the Euler discretization scheme modified with the Full Truncation

method (see Lord et al. [93]):

vt+1 = vt + λ(θ − (vt)+)∆t+ σ
√

(vt)+

√
∆tWt +

Ntn+1∑
n=1

zn (3.27)

where x+ denotes the positive part of x, Wt is a standard normal random variable,

Nt is a Poisson process with intensity l∆t, and zn ∼ IΓ(ν, µ).
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We refer to Glasserman [67] for a complete review on Monte Carlo methods

and to Platen and Bruti-Liberati [98] for an overview of different methods for

simulation of processes with jumps.

Before testing the different inversion procedures, we show how different for-

mulations of the Laplace transform in (3.25) may lead to different results of the

Laplace transform in (3.1) and therefore to different option prices.

Two formulations of the Laplace transform

The Laplace transform of the realized variance under the model in equation (3.21)

can be rewritten as

LV (u) = E[e−uVT ] = eα2(u,T )+β2(u,T ) v0 , u ≥ 0 (3.28)

with functions α2(u, t) and β2(u, t) as below

β2(u, t) = 1−eγ(u)t

c2(u)+d2(u)eγ(u)t

α2(u, t) = −2λθ
σ2 log c2(u)+d2(u)eγ(u)t

c2(u)+d2(u)
+ λθT

c2(u)
+
∫ t

0
κJ(−β2(u, s))ds

and c2(u) = λ−γ(u)
−2u/T

, d2(u) = λ+γ(u)
2u/T

and γ(u) =
√
λ2 + 2σ2u/T . In the following, we

will refer to equation (3.25) and equation (3.28) as Formulation 1 and Formulation

2, respectively.

Inspired by Albrecher et al. [6] and Lord and Kahl [92], we perform some nu-

merical studies showing how the two formulations may lead to completely different

option prices, especially when considering long maturities.

Figure 3.1 (left) shows the case corresponding to prices with maturity of 1 year

and parameters v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788, ν = 4.8, µ = 0.02,

l = 1.5. Prices are computed through the Bromwich-trapezoidal approximation in

(3.5) with b = 0.1, h = 0.01 and the two different formulations. The difference

between the two formulations becomes even bigger when considering maturities

longer than 1 year. The reason for this difference is that, for maturities large

enough, Formulation 2 leads to discontinuities in the Laplace transform of the

realized variance and therefore in the corresponding Laplace transform of the call

function, which is the one to be inverted. This is evident from Figure 3.2 where we

plot real and imaginary part of LC computed in b+ inh with b = 0.1, h = 0.01 and

n ranging from 62000 to 64000. Note that those values enter in the approximation
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(3.5). Observe also that, in this example, the two obtained price curves look both

reasonable and the presence of discontinuities is not so evident from Figure 3.1

(left), without looking at Figure 3.2.
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Figure 3.1: Prices of call options on VT in the SVJ-v model with Inverse Gamma
jumps, T = 1 year, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788, ν = 4.8,
µ = 0.02, l = 1.5. Prices are computed using the two formulations and applying
the Bromwich-trapezoidal rule with b = 0.1, h = 0.01 (left) and making use of the
Euler acceleration technique with A = 29, L = 4, m = 11, n = 40 (right).
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Figure 3.2: Real and imaginary part of LC(u) in the SVJ-v model with Inverse
Gamma jumps, T = 1 year, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788,
ν = 4.8, µ = 0.02 and l = 1.5 computed using the two formulations. The Laplace
transform is evaluated in b+ inh with b = 0.1, h = 0.01.

Subsequently, we test the performance of the Euler summation formula applied
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to the Bromwich-trapezoidal rule, when using Formulation 2. We assume the same

model-parameters as above, a maturity of 1 year and parameters in the algorithm

A = 29, L = 4, m = 11, n = 40. These lead to discontinuities as shown in Figure

3.1 (right). Changing the parameters A and L or increasing n and m the results do

not improve much. Also, the default parameters of the algorithm A = 19, L = 1,

m = 11, n = 38 lead to negative prices in correspondence to a few strikes

Next, we test the sensitivity of Weeks’ algorithm to discontinuities in the

Laplace transform. In this case, prices computed with the two different formu-

lations lead to analogous results. Figure 3.3 (left) shows the case corresponding to

model-parameters as above and a maturity of 1 year. Weeks’ algorithm is imple-

mented with N = 103 and ` = 1.

On the other hand, the use of Iseger’s algorithm together with Formulation 2

leads to numerical instabilities. This is shown in Figure 3.3 (right) which represents

the analogous of Figure 3.3 (left). Iseger’s algorithm is implemented with n = 16.
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Figure 3.3: Prices of call options on VT in the SVJ-v model with Inverse Gamma
jumps, T = 1 year, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788, ν = 4.8,
µ = 0.02, l = 1.5. Prices are computed using the two formulations and applying
Weeks’ algorithm with N = 103 and ` = 1 (left) and Iseger’s algorithm with
n = 16(right).

In the following numerical experiments, we will test the performance of the

different algorithms when using Formulation 1 which, we do believe, avoids dis-

continuities and therefore performs better than Formulation 2.

Finally, we remark that the implied volatility is quite sensitive to differences in

option prices, and therefore errors are amplified when looking at implied volatilities
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rather than prices.

Numerical tests on the Bromwich-trapezoidal rule

We start from an application of formula (3.5) showing how the specific choice of

the parameters h and b in the algorithm may have a considerable impact on the

corresponding results. We consider parameters v0 = 0.0348, λ = 1.15, θ = 0.0218,

σ = 0.3788, ν = 4.8, µ = 0.02, l = 1.5 and a maturity of 3 months. First, we fix

the value b = 0.1 and perform the algorithm for different values of h. Then, we fix

h = 0.01 and perform for different values of b. In all cases, we truncate the infinite

sum at the 105th term. In the first case, we observe sensitivity with respect to

h, see e.g., Figure 3.4 (left). On the contrary, in the second case, represented in

Figure 3.4 (right), the approximation reveals to be independent on the value of b.

We observe that the performance of the approximation also depends on the

specific parameters we choose for the model. For example, modifying the param-

eters to v0 = 0.0653, λ = 3.8, θ = 0.0918, σ = 0.9271 and keeping the same

jumps-parameters and maturity as above, we obtain Figure 3.5 where sensitivity

to h is less evident than in Figure 3.4.

Here we focussed on options with a maturity of 3 months. Implementing the al-

gorithm with the same parameters and different maturities, we obtained analogous

results.

Finally, numerical tests on the Euler summation formula, which corresponds

to parameters h = π/LK, b = A/2LK, dependent on the specific strike, provide

good results, as shown in Figure 3.6. The algorithm works well also for different

maturities.
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Figure 3.4: Prices of call options on VT in the SVJ-v model with Inverse Gamma
jumps with v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788, ν = 4.8, µ = 0.02,
l = 1.5, T = 3 months, computed using Monte Carlo simulation and the Bromwich-
Trapezoidal rule. Sensitivity with respect to h (left) and to b (right) are analyzed.
In all the cases the truncation is made at N = 105. For the case on the left, red,
light blue and dark blue lines coincide.
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Figure 3.5: Prices of call options on VT in the SVJ-v model with Inverse Gamma
jumps with v0 = 0.0653, λ = 3.8, θ = 0.0918, σ = 0.9271, ν = 4.8, µ = 0.02,
l = 1.5, T = 3 months, computed using Monte Carlo simulation and the Bromwich-
Trapezoidal rule. Sensitivity with respect to h (left) and to b (right) are analyzed.
In all the cases the truncation is made at N = 105. For the case on the left, red,
light blue and dark blue lines coincide.
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Figure 3.6: Prices of call options on VT in the SVJ-v model with Inverse Gamma
jumps with v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788 (left), and v0 = 0.0653,
λ = 3.8, θ = 0.0918, σ = 0.9271 (right). In both cases ν = 4.8, µ = 0.02, l = 1.5
and the maturity is 3 months. Prices are computed using Monte Carlo simulation
and the Bromwich-Trapezoidal rule with Euler acceleration technique, with A = 19,
L = 1, m = 11, n = 38.

Numerical tests on Weeks’ algorithm

We now perform numerical tests on Weeks’ algorithm. We use the same model

parameters as before and we compare the results obtained with prices computed

via Monte Carlo simulations.

We start by using the default parameters in Weeks’ [107], namely ` = 1, r =

(0.1)4/n and N = 100, N number of terms in the summation 3.12. In this case

prices computed by inversion of the Laplace transform differ considerably from

prices computed through Monte Carlo simulations. However, when increasing N

to 103 good results are obtained, as shown in Figure 3.7.

For maturities of 6 months or 1 year good results are still produced, whereas

when reducing the maturity to below 3 months, numerical issues arise.
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Figure 3.7: Prices of call options on VT in the SVJ-v model with Inverse Gamma
jumps, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788 (left) and v0 = 0.0653,
λ = 3.8, θ = 0.0918, σ = 0.9271(right). The jump-parameters are ν = 4.8, µ =
0.02, l = 1.5 and the maturity is 3 months. Prices are computed using Monte
Carlo simulation and Weeks’ algorithm. In both cases ` = 1, r = 0.14/n and the
truncation is made at N = 103.

Numerical tests on Iseger’s algorithm

Finally, we test the inversion procedure in Iseger [79]. The numerical experiments

performed confirm the accuracy of the algorithm, as shown in Figure 3.8 corre-

sponding to n = 16 and M = 26, for a maturity of 3 months. Good results are also

obtained for different maturities, including those less than 3 months in which case

Weeks’ algorithm works poorly.

However, keep in mind that Iseger’s algorithm is extremely sensitive to discon-

tinuities in LV (u) and therefore attention must be paid to the used expression of

the Laplace transform.

72



Strikes
0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055

P
ri
c
e
s

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

SVJ-v with Inverse Gamma jumps

Prices via MC
Prices with Iseger algorithm

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12

Strikes

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

P
ri
c
e
s

SVJ-v with Inverse Gamma jumps

Prices via MC
Prices with Den Iseger algorithm

Figure 3.8: Prices of call options on VT in the SVJ-v model with Inverse Gamma
jumps, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788 (left) and v0 = 0.0653,
λ = 3.8, θ = 0.0918, σ = 0.9271 (right). In both cases ν = 4.8, µ = 0.02, l = 1.5
and the maturity is 3 months. Prices are computed using Monte Carlo simulation
and Iseger’s algorithm.

Control Variates

Numerical performances of the previous algorithms may possibly be enhanced

by a careful application of a control variate. This technique was introduced in

Andersen and Andreasen [9] who apply Fourier transform methods for pricing of

equity options. Later, it was extended in the context of realized variance options by

Drimus [51]. The main idea behind it is the use of a distribution for the realized

variance, for which call option-prices are available in closed-form. Denoting by

LV̂ (u) and LĈ(u) the Laplace transform of the realized variance and of the call

funtion under the control variate distribution, the idea is to compute the Laplace

transform

LC−Ĉ(u) = LC(u)−LĈ(u) =
LV (u)−LV̂ (u)

u2
,

invert it, thus obtaining C − Ĉ, and finally recovering C by adding Ĉ which is

known in closed-form.

For example, when using a Gamma Control Variate with density

fΓ(x) =
β̂α

Γ(α̂)
xα̂−1e−β̂x1x≥0,
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the corresponding price of a call option on the realized variance is

Ĉ(K) =
α̂

β̂
(1− F (K; α̂ + 1, β̂))−K(1− F (K; α̂, β̂))

with F cumulative distribution function of a Gamma distribution Γ(α̂, β̂). This is

the Control Variate used e.g., in Drimus [51] in order to compute prices under the

Heston model and the 3/2 model.

The parameters of the Gamma distribution are chosen in order to match its

mean with C(0) and its second moment with that of a log-normal distribution of

the form

C(0)eσ̂
√
TN(0,1)− σ̂

2T
2 ,

thus obtaining

α̂ =
E[VT ]

β̂

β̂ =
1

E[VT ](eσ̂2T − 1)
.

As a first experiment, we also apply this distribution as control variate when

using the Bromwich-trapezoidal rule and Iseger’s algorithm. We compare the per-

formances of the technique when using the two different formulations of the Laplace

transform. The numerical experiments performed show that when using Formula-

tion 2, which leads to discontinuities, a Gamma control variate technique does not

improve the results. This is shown for example in Figure 3.9 and Figure 3.11, cor-

responding to parameters v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788, ν = 4.8,

µ = 0.02, l = 1.5 and a maturity of 1 year. On the left, prices with the 2 differ-

ent formulations are presented. On the right, real part of the Laplace transform

LC−Ĉ(u) to be inverted is shown. The case in the Figure corresponds to σ̂ = 1.

Different values of σ̂ lead to analogous results.

Afterwards, we perform the same experiment using an Inverse Gamma Control

variate, which is more in line with the distribution of the jumps. Given an Inverse

Gamma distribution, with density

fIΓ(x) =
µ̂ν̂

Γ(ν̂)
x−ν̂−1e−µ̂/x1x≥0,

the corresponding price of a call option on the realized variance is

Ĉ(K) =
µ̂

ν̂ − 1
F (1/K; ν̂ − 1, µ̂)−KF (1/K; ν̂, µ̂).
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The parameters can be chosen by matching the first two moments in an analogous

way as before

ν̂ =
1

eσ̂2T − 1
+ 2

µ̂ = E[VT ](ν̂ − 1).

The numerical results are analogous to those obtained in the previous case and

are shown in Figure 3.10 and Figure 3.12, corresponding to the case σ̂ = 1.

Remark 3.4.1. The control variates applied above help eliminate discontinuities

in zero, see Drimus [51]. However, further discontinuities might be introduced when

implementing the codes in Matlab, e.g., when evaluating logarithms or Bessel func-

tions in the complex domain. This is a possible explanation of why in the numerical

experiments above the control variate performs poorly. Observe also that when ap-

plying Inverse Gamma control variates, additional discontinuities could be created

by the presence of an additional Bessel function in the Laplace transform of the

Inverse Gamma control variate.
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Figure 3.9: On the left, prices of call options on VT in the SVJ-v model with Inverse
Gamma jumps, T = 1 year, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788,
ν = 4.8, µ = 0.02, l = 1.5. Prices are computed using the two formulations,
applying the Bromwich-trapezoidal rule with b = 0.1, h = 0.01 and making use of
a Gamma control variate. On the right, real part of LC−Ĉ(u) evaluated in b+ inh
with b = 0.1, h = 0.01.
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Figure 3.10: On the left, prices of call options on VT in the SVJ-v model with
Inverse Gamma jumps, T = 1 year, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788,
ν = 4.8, µ = 0.02, l = 1.5. Prices are computed using the two formulations,
applying the Bromwich-trapezoidal rule with b = 0.1, h = 0.01 and making use of
an Inverse Gamma control variate. On the right, real part of LC−Ĉ(u) evaluated
in b+ inh with b = 0.1, h = 0.01.
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Figure 3.11: On the left, prices of call options on VT in the SVJ-v model with
Inverse Gamma jumps, T = 1 year, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788,
ν = 4.8, µ = 0.02, l = 1.5. Prices are computed using the two formulations,
applying Iseger’s algorithm with n = 16, and making use of a Gamma control
variate. On the right, real part of LC−Ĉ(u) evaluated in

a+iλj+2iπk/M2

∆
, M2 = 256,

a = 0.1719, j = 1.
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Figure 3.12: On the left, prices of call options on VT in the SVJ-v model with
Inverse Gamma jumps, T = 1 year, v0 = 0.0348, λ = 1.15, θ = 0.0218, σ = 0.3788,
ν = 4.8, µ = 0.02, l = 1.5. Prices are computed using the two formulations,
applying Iseger’s algorithm with n = 16, and making use of an Inverse Gamma
control variate. On the right, real part of LC−Ĉ(u) evaluated in

a+iλj+2iπk/M2

∆
, M2 =

256, a = 0.1719, j = 1.

3.5 Adding jumps in the asset price dynamics

In this section we introduce an extension of the model in (3.21) where we add

jumps to the asset price dynamics. This allows for a better fit of the short term

implied volatility from equity options. The joint dynamics of the log-price and the

instantaneous variance under this model are given by

dXt = (−γmJ − 1
2
vt)dt+

√
vtdWt + dJSt

dvt = λ(θ − vt)dt+ σ
√
vtdBt + dJVt

(3.29)

where
JS =

∑N(t)
i=1 ZS

i , ZS
i ∼ i.i.d. ZS

JV =
∑N(t)

i=1 ZV
i , ZV

i ∼ i.i.d. ZV

with N(t) Poisson process with intensity l. We keep all the hypotheses made when

introducing the model in (3.21), including the Inverse Gamma as distribution of

the jump size ZV , whereas ZS follows a normal distribution N (m, v2) with density

fN (x) =
1√

2πv2
e−

(x−m)2

v2 .
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Finally,

mJ = em+ 1
2
v2 − 1

is the compensator. Note that the same Poisson process is considered for jumps in

the log-price and jumps in the instantaneous variance, meaning that they occur

simultaneously. This is in line with the existing literature (Sepp [100], Eraker

[55]). The model in (3.29) can be considered an alternative to the model in Sepp

[100], the only difference being an Inverse Gamma distribution for JV rather than

an exponential distribution. As in Sepp [100], we do not assume any correlation

between the volatility and the asset return jumps, as opposed to Duffie et al. [53].

Under the dynamics in (3.29) the realized variance presents a further component

due to jumps in Xt

VT =
1

T

∫ T

0

vtdt+

N(T )∑
i=1

(ZS
i )2

 (3.30)

(see e.g., Sepp [100]). Nonetheless, an explicit expression for the Laplace transform

of VT is available in this case as well, and it is given by

LV (u) = E[e−uVT ] = eα1(u,T )+β1(u,T ) v0+δ(u,T ) , u ≥ 0 (3.31)

with functions α1(u, t) and β1(u, t) as below

β1(u, t) = 1−e−γ(u)t

c1(u)+d1(u)e−γ(u)t

α1(u, t) = −2λθ
σ2 log c1(u)+d1(u)e−γ(u)t

c1(u)+d1(u)
+ λθt

c1(u)
+
∫ t

0
κJ(−β1(u, s))ds

δ(u, t) = lt

[
e
− um2

T+2v2u√
2v2u/T+1

− 1

]

with kJ as in equation (3.24) and c1(u) = λ+γ(u)
−2u/T

, d1(u) = λ−γ(u)
2u/T

and γ(u) =√
λ2 + 2σ2u/T . Again, we can substitute α1, β1 with α2, β2 in (3.28) thus obtaining

an alternative expression of the Laplace transform, which however may lead to

discontinuities, especially for long maturities. This is shown for example in Figure

3.13 corresponding to prices with maturity of 1 year and parameters v0 = 0.0317,

λ = 3.2501, θ = 0.0179, σ = 0.2897, ν = 3.8, µ = 0.1728, m = −0.1, v =

0.1, l = 1.0727. These are obtained from the parameters in Sepp [100], by fixing

ν = 3.8, computing µ by matching the first moment with that of the exponential

distribution in [100] and keeping all the other parameters unchanged.
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The analysis of the previous chapters can be easily extended to this case, where

further discontinuities potentially arise due to the square root in the Laplace trans-

form of the asset-jumps.

0.03 0.04 0.05 0.06 0.07 0.08 0.09

Strikes

0.005

0.01

0.015

0.02

0.025

0.03
SVJ-J with Inverse Gamma jumps

Formulation 1
Formulation 2

24 24.5 25 25.5 26 26.5 27
k

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

9.2

re
a
l(
L

C
)

×10
-5 SVJ-v with Inverse Gamma jumps

Formulation 1
Formulation 2

Figure 3.13: On the left, prices of call options on VT in the SVJ-J model with
Inverse Gamma jumps, T = 1 year, v0 = 0.0317, λ = 3.2501, θ = 0.0179, σ =
0.2897, ν = 3.8, µ = 0.1728, m = −0.1, v = 0.1, l = 1.0727. Prices are computed
using the two formulations, applying Iseger’s algorithm with n = 16, and making
use of a Gamma control variate. On the right, real part of LC−Ĉ(u) evaluated in
a+iλj+2iπk/M2

∆
, M2 = 256, a = 0.1719, j = 1.

Table 3.1: Summary of our numerical experiments

Bromwich-trapezoidal rule Weeks’ algorithm Iseger’s algorithm

Sensitivity to discontinuities Sensitivity to discontinuities
Sensitivity to h

Issues for T < 3M

Table 3.2: Parameters providing good results in our experiments
with Formulation 1

Brom-trap. rule with Euler Weeks’ algorithm Iseger’s algorithm

A = 19 r = (0.1)4/n or r = (0.1)6/n n = 16
L = 1 ` = 1 M = 32
m = 11 N = 103

n = 38
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3.6 Conclusions

We provided a description of some algorithms for the inversion of Laplace trans-

forms and we investigated their performance in the context of pricing of real-

ized variance call-options, showing numerical issues that may appear when using

these methods. The algorithms investigated are the Bromwhich-trapezoidal rule

[2], Weeks’ algorithm [107] and Iseger’s algorithm [79], whereas the model consid-

ered is a generalization of the Heston stochastic volatility model including jumps

in the instantaneous variance dynamics.

First of all, we showed that (theoretically) equivalent expressions of the Laplace

transform of the realized variance may lead to different option prices. This is due to

the fact that depending on the particular expression we use, discontinuities may

appear because of the presence of the complex logarithm, and in the case with

Inverse Gamma jumps, because of complex square roots as argument of Bessel

functions. The numerical experiments performed showed that both the Bromwich-

trapezoidal rule and Iseger’s algorithm are really sensitive to different formulations

of the Laplace transform of the realized variance. On the other hand, Weeks’

algorithm seems to overcome discontinuities.

Afterwards, we analyzed the performance of the different algorithms when using

a formulation of the Laplace transform which seems not to lead to discontinuities.

In the case of the Bromwich-trapezoidal rule we observed some sensitivity to the

parameter h in the algorithm, whereas for Weeks’ algorithm numerical issues ap-

pear for short maturities. Finally, Iseger’s algorithm performs well. The results of

our numerical investigations are summarized in Table 3.1.

Lastly, we showed that a control variate technique which might potentially help

overcoming discontinuities of the Laplace transform, does not work in our case.

Indeed, this technique helps eliminating discontinuities of the call-price Laplace

transform in zero, but do not eliminate discontinuities in the Laplace transform of

the realized variance.

In the paper we focussed on the case where jumps are allowed in the instanta-

neous variance only. Similar numerical issues also appear when jumps are included

both in the dynamics of the log-price and of the instantaneous variance.

In conclusion, before applying a Laplace transform method, it is fundamen-

tal to verify whether there are discontinuities in the Laplace transform, check the
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accuracy of the algorithm and compare with prices obtained by other methods,

such as Monte Carlo simulations. In fact, an inaccurate use of inversion methods

might lead to wrong option prices. On the other hand, by properly choosing an

inversion algorithm and optimizing it (e.g., choosing opportune parameters, intro-

ducing some damping factor in order to eliminate discontinuities), it is possible to

obtain efficient and reliable methods for the inversion of Laplace transforms. Hav-

ing reliable inversion algorithms is important not only for pricing but also for risk

management purposes. Indeed, as observed e.g., in Drimus [51], realized variance

options can naturally be hedged by variance swaps (see also Carr and Lee [36]).

The corresponding deltas can be easily computed by inversion methods, as long as

the Laplace transform of the call price can be differentiated in closed form. This

is the case for the model considered in this paper.

It is left for future work to investigate, from a theoretical point of view, the sta-

bility of the different expressions of the Laplace transform of the realized variance.

This could be done in a similar fashion as in Albrecher et al. [6], who investigate

stability of the characteristic function of the log-asset price in the Heston model.

Our guess is that a similar lenghtly calculation could be readapted to the case

of realized variance options in the Heston model, whereas the same proof in the

case of jumps, might potentially be too difficult or not applicable. Finally, it could

also be interesting to check whether possible discontinuities can be avoided using

a rotation-count algorithm, as that one in Kahl and Jäckel [81], of which a deep

analysis can be found in Lord and Kahl [91].
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Chapter 4

The Multivariate Mixture
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Bloomberg

Abstract

The Multi Variate Mixture Dynamics Model is a tractable, dynamical,

arbitrage-free multivariate model characterized by transparency in the de-

pendence structure, since closed form formulae for terminal correlations,

average correlations and copula functions are available. It also allows for

complete decorrelation between assets and instantaneous variances. Each

single asset is modelled according to a lognormal mixture dynamics model

and this univariate version is widely used in the industry due to its flexibility

and accuracy. The same property holds for the multivariate process of all

assets whose density is a mixture of multivariate basic densities. This allows

for consistency of single asset and index/portfolio smile.

In this paper, we generalize the MVMD model by introducing shifted

dynamics and we propose a definition of implied correlation in this model.

We investigate whether the model is able to consistently reproduce the im-

plied volatility of FX cross rates once the single components are calibrated to

1This paper solely reflects the author’s personal opinion and does not represent the opinions
of the author’s employers, present and past, in any way.
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univariate shifted lognormal mixture dynamics models. We compare the per-

formance of the shifted MVMD model in terms of implied correlation with

those of the shifted Simply Correlated Mixture Dynamics model where the

dynamics of the single assets are naively connected by introducing correla-

tion among their Brownian motions. Finally, we introduce a model with un-

certain volatilities and correlation. The Markovian projection of this model

is a generalization of the shifted MVMD model.

4.1 Introduction to the Multivariate Mixture

Dynamics

The Multi Variate Mixture Dynamics model (MVMD) introduced by Brigo, Mercu-

rio and Rapisarda [28] and recently described in a deeper way in Brigo, Rapisarda

and Sridi [29] is a tractable dynamical arbitrage-free model defined as the multi-

dimensional version of the lognormal mixture dynamics model (LMD) in [24] and

[25] (see also [27]). The single-asset LMD model is a no-arbitrage model widely

used among practitioners because of its practical advantages in calibration and

pricing (analytical formulae for European options, explicit expression for the local

volatility) and of its flexibility and accuracy. In fact, a variant of this model is

presently used in the calibration of implied volatility surfaces for single stocks and

equity indices in the Bloomberg terminal [23], and in the subsequent pricing of

European, American and path-dependent options on single assets and baskets of

assets. The main advantage of the MVMD over other multidimensional models,

such as e.g., the Wishart model ([46] and [69]) is in its tractability and flexibility

which allows the MVMD to calibrate index volatility smiles consistently with the

univariate assets smiles. In addition, a full description of its dependence structure

(terminal correlations, average correlations, copula functions) is available.

The MVMD model also enjoys some interesting properties of Markovian pro-

jection. First of all, the model can be seen as a Markovian projection of a model

with uncertain volatilities denominated MUVM model. As a consequence, Euro-

pean option prices under the MVMD model can more easily be computed under

the MUVM model instead. However, the MVMD model remains superior in terms

of smoothness and dynamics. Secondly, the Geometric average basket under the
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MVMD model can be projected into a univariate lognormal mixture dynamics

model. Consequently, European option prices on the basket can be easily com-

puted through the Black and Scholes formula.

Finally, under the MVMD model, the terminal correlation between assets and

squared volatilities is zero. This mitigates the common drawback of local volatility

models of having perfect instantaneous correlation between assets and squared

volatilities.

In this paper we generalize the MVMD model, including shifts to the dynamics

of the single assets, and we study the correlation skew under this framework.

Before going into details, we recapitulate the definition of the MVMD model

(in the non-shifted case), starting with the univariate LMD model and then gen-

eralizing to the multidimensional case.

The volatility smile mixture dynamics model for single

assets

Given a maturity T > 0, we denote by P (0, T ) the price at time 0 of the zero-

coupon bond maturing at T , and by (Ω,F ,P) a probability space with a filtration

(Ft)t∈[0,T ] which is P-complete and satisfying to the usual conditions. We assume

the existence of a measure Q equivalent to P, called the risk–neutral or pricing mea-

sure, ensuring arbitrage freedom in the classical setup, for example, of Harrison,

Kreps and Pliska [75, 76]. In this framework we consider N purely instrumental

diffusion processes Y i(t) with dynamics

dY i(t) = µY i(t)dt+ vi(t, Y i(t))Y i(t)dW (t) (4.1)

and a deterministic initial value Y i(0), marginal densities pit and diffusion coeffi-

cient vi. We define St as the solution of

dS(t) = µS(t)dt+ s(t, S(t))S(t)dW (t) (4.2)

where s is a local volatility function, namely a deterministic function of t and S

only, and it is computed so that the marginal density pt of S(t) is a linear convex

combination of the densities pit [24, 25, 26]:

pt =
∑
i

λipit with λi ≥ 0,∀i and
∑
i

λi = 1. (4.3)
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In what follows we restrict ourselves to the case

Y i(0) = S(0),

vi(t, x) = σi(t),

V i(t) =
√∫ t

0
σi(s)2ds

pit(x) = 1√
2πxV i(t)

exp

[
− 1

2V 2
i (t)

(
ln
(

x
S(0)

)
− µt+ 1

2
V i(t)2

)2
]

= `it(x)

(4.4)

with σi deterministic. The parameter µ is completely specified by Q. If the asset

is a stock paying a continuous dividend yield q and r is the time T constant risk-

free rate, then µ = r − q. If the asset is an exchange rate and rd and rf are the

(deterministic) domestic and foreign rates at time T , respectively, then µ = rd−rf .
If the asset is a forward price, then µ = 0.

Brigo and Mercurio [25] proved that defining

s(t, x) =

(∑N
k=1 λ

kσk(t)2`kt (x)∑N
k=1 λ

k`kt (x)

)1/2

(4.5)

and assuming a few additional nonstringent assumptions on the σi, the correspond-

ing dynamics for St admits a unique strong solution.

Theorem 4.1.1. Existence and uniqueness of solutions for the LMD

model. Assume that all the real functions σi(t), defined on the real numbers t ≥ 0,

are once continuously differentiable and bounded from above and below by two

positive real constants. Assume also that in a small initial time interval t ∈ [0, ε],

ε > 0, the functions σi(t) have an identical constant value σ0. Then the Lognormal

Mixture Dynamics model (LMD) defined by

dSt = µStdt+ s(t, St)StdWt, S0, s(t, x) =

(∑N
k=1 λ

kσk(t)2`kt (x)∑N
k=1 λ

k`kt (x)

)1/2

, (4.6)

admits a unique strong solution and the forward Kolmogorov equation (Fokker

Planck equation) for its density admits a unique solution satisfying (4.3), which is

a mixture of lognormal densities.

An important consequence of the above construction is that European option

prices on S can be written as linear combinations of Black-Scholes prices with

weights λi. The same combination holds for the Greeks at time 0.
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Combining mixture dynamics on several assets: SCMD

Consider now, n different asset prices S1 . . . Sn each calibrated to an LMD model

as in equation (4.6), and denote by λki , σ
k
i the parameters relative to the k-th in-

strumental process of the asset i. There are two possible ways in order to combine

the dynamics of the single assets into a multivariate model. The first more im-

mediate way consists in introducing a non-zero quadratic covariation between the

Brownian motions driving the LMD models of equation (4.6) for S1 . . . Sn leading

to the so-called SCMD model.

Definition 4.1.2. The SCMD Model. We define the Simply Correlated Mul-

tivariate Mixture Dynamics (SCMD) model for S = [S1, . . . , Sn] as a vector of

univariate LMD models, each satisfying Theorem 4.1.1 with diffusion coefficients

s1, . . . , sn given by equation (4.6) and densities `1, . . . , `n applied to each asset, and

connected simply through quadratic covariation ρij between the Brownian motions

driving assets i and j. This is equivalent to the following n-dimensional diffusion

process where we keep the Ws independent and where we embed the Brownian

covariation into the diffusion matrix C̄, whose i-th row we denote by C̄i:

dS(t) = diag(µ)S(t)dt+ diag(S(t))C̄(t, S(t))dW (t), āi,j(t, S) := C̄iC̄
T
j (4.7)

āi,j(t, S) = si(t, Si)sj(t, Sj)ρij =

(∑N
k=1 λ

k
i σ

k
i (t)2`ki,t(Si)∑N

k=1 λ
k
i `
k
i,t(Si)

∑N
k=1 λ

k
jσ

k
j (t)2`kj,t(Sj)∑N

k=1 λ
k
j `
k
j,t(Sj)

)1/2

ρij

(4.8)

where T represents the transposition operator.

Assumption. We assume ρ = (ρij)i,j to be positive definite.

It is evident from the previous construction that the SCMD is consistent with

both the dynamics of the single assets Si and the instantaneous correlation matrix

ρ. Moreover, we can easily simulate a path of S by exogenously computing ρ

for example from historical data, assuming it constant over time and applying

a naive Euler scheme. However, an explicit expression for the density of S =

[S1, . . . , Sn] under the SCMD dynamics is not available. As a consequence, if we

aim at computing prices of options whose payoff depends on the value at time T

only we still need to simulate entire paths of S over the interval [0, T ], which can

be quite time consuming.
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Lifting the mixture dynamics to asset vectors: MVMD

A different approach, still consistent with the single assets’ dynamics, lies in merg-

ing the dynamics of the single assets in such a way that the mixture property is

lifted to the multivariate density and the corresponding model gains some further

tractability property with respect to the SCMD model. This can be achieved by

mixing the densities of the instrumental processes of each individual asset in all

possible ways and by imposing the correlation structure ρ at the level of the single

instrumental processes, rather than of the assets as we did for the SCMD model.

This has important consequences for the actual structure of the correlation, see

[28]. Below we summarize the construction leading to the MVMD model, while

referring to Brigo et al. [29] for further details.

Assume we have calibrated an LMD model for each Si(t). If pSi(t) is the density

of Si, we write

pSi(t)(x) =

Ni∑
k=1

λki `
k
i,t(x), with λki ≥ 0,∀k and

∑
k

λki = 1 (4.9)

where (`ki,t)k are the densities of (Y k
i )k, instrumental processes for Si evolving

lognormally according to the stochastic differential equation:

dY k
i (t) = µiY

k
i (t)dt+ σki (t)Y k

i (t)dZi(t), d〈Zi, Zj〉t = ρijdt, Y k
i (0) = Si(0).

(4.10)

For notational simplicity we assume the number of base densities Ni to be the

same, N , for all assets. The exogenous correlation structure ρij is given by the

symmetric, positive–definite matrix ρ.

Denote by S(t) = [S1(t), · · · , Sn(t)]T the vector of asset prices with

dS(t) = diag(µ)S(t)dt+ diag(S(t))C(t, S(t))dW (t). (4.11)

As we did for the one dimensional case, we look for a matrix C such that

pS(t)(x) =
N∑

k1,k2,···kn=1

λk1
1 · · ·λknn `

k1,...,kn
1,...,n;t (x), `k1,...,kn

1,...,n;t (x) := p[
Y
k1
1 (t),...,Y knn (t)

]T (x),

(4.12)

or more explicitly

`k1,...,kn
1,...,n;t (x) =

1

(2π)
n
2

√
det Ξ(k1···kn)(t)Πn

i=1xi
exp

[
− x̃

(k1···kn)TΞ(k1···kn)(t)−1x̃(k1···kn)

2

]
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where Ξ(k1···kn)(t) is the integrated covariance matrix whose (i, j) element is

Ξ
(k1···kn)
ij (t) =

∫ t

0

σkii (s)σ
kj
j (s)ρijds (4.13)

and

x̃
(k1···kn)
i = lnxi − lnxi(0)− µit+

∫ t

0

σ
k2
i
i (s)

2
ds. (4.14)

Computations show that if a solution exists, it must satisfy the definition below.

Definition 4.1.3. The MVMD Model. The (lognormal) Multi Variate Mixture

Dynamics (MVMD) model is given by

dS(t) = diag(µ) S(t) dt+ diag(S(t)) C(t, S(t))B dW (t), (4.15)

Ci(t, x) :=

∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n σkii (t) `k1,...,kn

1,...,n;t (x)∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n `k1,...,kn

1,...,n;t (x)
,

`k1,...,kn
1,...,n;t (x) := p[

Y
k1
1 (t),...,Y knn (t)

]T (x) and defining B such that ρ = BBT , a = CB(CB)T ,

ai,j(t, x) =

∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n V k1,...,kn(t) `k1,...,kn

1,...,n;t (x)∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n `k1,...,kn

1,...,n;t (x)
(4.16)

where

V k1,...,kn(t) =
[
σkii (t) ρi,j σ

kj
j (t)

]
i,j=1,...,n

. (4.17)

From the previous definitions it is evident that the dynamics of the single assets

Si in the SCMD model are Markovian. On the other hand, in the MVMD model,

while the dynamics of the whole vector S is Markovian, those of the single assets

are not. This leads to more realistic dynamics.

Under mild assumptions, the existence and uniqueness of a solution can be

proved through the following Theorem.

Theorem 4.1.4. Assume that the volatilities σkii (t) for all i are once continuously

differentiable, uniformly bounded from below and above by two positive real numbers

σ̃ and σ̂, respectively, and that they take a common constant value σ0 for t ∈ [0, ε]
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for a small positive real number ε, namely

σ̃ = inf
t≥0

(
min

i=1···n,ki=1,···N
(σkii (t))

)
,

σ̂ = sup
t≥0

(
max

i=1···n,ki=1···N
(σkii (t))

)
,

σkii (t) = σ0 > 0 for all t ∈ [0, ε].

Also assume the matrix ρ to be positive definite. Then the MVMD n-dimensional

stochastic differential equation (4.15) admits a unique strong solution. The diffu-

sion matrix a(t, x) in (4.16) is positive definite for all t and x.

4.2 Introducing a shift in MVMD

When modelling a one dimensional asset price through an LMD model, implied

volatilities with minimum exactly at a strike equal to the forward asset price

are the only possible outcome. In order to gain greater flexibility and therefore

move the smile minimum point from the ATM forward, we can shift the overall

density by a deterministic function of time, carefully chosen in order to preserve

risk–neutrality and therefore guarantee no–arbitrage. This is the so–called shifted

lognormal mixture dynamics model [26]. Under this model the new asset price

process S is defined as

St = βeµt +Xt (4.18)

with β real constant and Xt satisfying (4.6). Under the assumption K−βeµT > 0,

the price at time 0 of a European call option with strike K and maturity T can

be written as

P (0, T )ET{(ST −K)+} = P (0, T )ET{(XT − [K − βeµT ])+} (4.19)

and thus, as a combination of Black and Scholes prices with strike K − βeµT . The

model therefore preserves the same level of tractability as in the non-shifted case

with the advantage of gaining more flexibility.

Once each asset is calibrated to a shifted LMD model, we have two possibilities

for reconstructing the dynamics of the multidimensional process. The first possibil-

ity is to reconnect the single assets by introducing a non-zero quadratic covariation
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between the Brownian motions (as we did for the SCMD model), leading to what

we call the shifted SCMD model. The second possibility going on the same lines as

the approach leading to the MVMD model, lies in applying the same shift βie
µit

to each instrumental process Y k
i of each asset Xi

Ski (t) = Y k
i (t) + βie

µit

where Y k
i satisfies the dynamics in (4.10) (this is equivalent to applying the shift

βie
µit directly to the i-th asset) and then mix the corresponding densities pSki (t)(x)

in all possible ways. Computations similar to those for the non-shifted case show

that if a solution exists, it must satisfy the definition below (details on the com-

putations are shown in the Appendix).

Definition 4.2.1. The Shifted MVMD Model. The shifted Multi Variate Mix-

ture Dynamics model is given by

dS(t) = diag(µ)S(t)dt+ diag(S(t))C̃(t, S(t))BdW (t), (4.20)

C̃i(t, x) :=

∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n σkii (t)(xi − βieµit) ˜̀k1,...,kn

1,...,n;t (x)

xi
∑N

k1,...,kn=1 λ
k1
1 ...λ

kn
n

˜̀k1,...,kn
1,...,n;t (x)

,

˜̀k1,...,kn
1,...n;t (x) = p

[S
k1
1 (t),...,Sknn (t)]T

(x) = `k1,...,kn
1,...,n;t (x− βeµt) (4.21)

and defining B such that ρ = BBT , ã = C̃B(C̃B)T ,

ãij(t, x) =

∑N
k1,k2,...kn=1 λ

k1
1 · · ·λknn V k1,...,kn(t)(xi − βieµit)(xj − βjeµjt)˜̀k1,...,kn

1,...n;t (x)

xixj
∑N

k1,k2,...kn=1 λ
k1
1 · · ·λknn ˜̀k1,...,kn

1,...n;t (x)

(4.22)

with V k1,...,kn as in (4.17).

We now have all the instruments to introduce the correlation skew and study

its behaviour under shifted SCMD and shifted MVMD dynamics.

4.3 The correlation skew

The aim of this section is to introduce a definition of correlation skew and to study

its behaviour under shifted MVMD dynamics in comparison with the correlation
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skew under shifted SCMD dynamics. It is observed in practice under normal mar-

ket conditions that assets are relatively weakly correlated with each other. How-

ever, during periods of market stress stronger correlations are observed. This fact

suggests that a single correlation parameter for all options quoted on a basket of

assets, or an index, say, may not be sufficient to reproduce all option prices on

the basket/index for a given expiry. In fact, this is what is observed empirically

when inferring a multidimensional dynamics from a set of single–asset dynamics.

Among others, this has been shown in Bakshi et al. [12] for options on the S&P

100 index and in Langnau [87] for options on the Euro Stoxx 50 index and on the

DAX index.

When computing the implied volatility, European call prices (or equivalently

put prices) are considered and the reference model is the benchmark Black &

Scholes [22] model. It seems then natural to consider as a multidimensional bench-

mark a model where the single assets follow geometric Brownian motions and

constant correlation among the single Brownian shocks is introduced. However,

when moving from the one-dimensional to the multidimensional framework, a big-

ger variety of possible option instruments for comparing prices under the reference

model and the model under analysis appears, the particular choice depending on

the specific product we are interested in. Austing [10] recently provided a discus-

sion of some of the most popular multi-assets products. He suggested the use of

composite options as benchmark on which defining the implied correlation. In this

paper we adopt a different approach based on the comparison with options on

S1(t), S2(t) with payoff

(S1(T )S2(T )−K)+ . (4.23)

Assume that the pair (S1, S2) follows a bi-dimensional Black and Scholes model,

in other words S1 and S2 follow two geometric Brownian motions with correlation

ρ and consider the payoff in equation (4.23). Given the Black and Scholes implied

volatilities for S1 and S2, the value ρimpl such that prices under the bi-dimensional

Black and Scholes model are the same as market prices

MKT Prices(S1(0), S2(0), K, T ) = BS Prices(S1(0), S2(0), K, T, ρimpl(K,T ))

is called implied correlation. If we try to match option prices for a given maturity

T and two different strikes K1, K2, we will observe two different values of the
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implied correlation. This is contrary to the hypothesis of constant correlation in

the bi-dimensional Black and Scholes model.

The curve K → ρimpl(K,T ) is called correlation skew. Thus, the correlation

skew can be considered as a descriptive tool/metric similar to the volatility smile

in the one-dimensional case, with the difference that it primarily describes implied

dependence instead of volatility.

Explaining the skew in MVMD with the single parameter

ρ via MUVM

The aim of this section is to introduce a definition of implied correlation under

shifted MVMD dynamics, when using options with payoff as in equation (4.23).

This leads to a straightforward application in the foreign exchange market within

the study of triangular relationships. Imagine, for example, that S1 and S2 repre-

sent the exchange rates USD/EUR and EUR/JPY, respectively. The cross asset

S3 = S1S2 then represents the USD/JPY exchange rate, and the corresponding

payoff in equation (4.23) is the payoff of a call option on the USD/JPY FX rate.

In the following, we will investigate whether the shifted MVMD model is able to

consistently reproduce the implied volatility of S3, once the single components S1,

S2 are calibrated to univariate shifted LMD models. Consistency properties of this

kind are important, for example, in order to reconstruct the time series of less

liquid cross currency pairs from more liquid ones.

Before proceeding we make a remark on the interpretation of ρ. Keeping in mind

the definition of instantaneous local correlation in a bivariate diffusion model

ρL(t) :=
d〈S1, S2〉t√

d〈S1, S1〉t d〈S2, S2〉t

and making use of Schwartz’s inequality, we obtain that the absolute value of the

local correlation under the shifted MVMD model is smaller than the value under

the shifted SCMD model. The result is contained in the Proposition below.

Proposition 4.3.1 (Local correlation in the shifted MVMD and shifted SCMD).

The instantaneous local correlation under the shifted SCMD model is ρ, whereas
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for the shifted MVMD model we have

ρL(t) =
ρ
∑N

k,k′=1 λ1
kλ2

k′σ
(k)
1 σ

(k′)
2

˜̀(kk′)
t (x1, x2)√(∑N

k,k′=1 λ1
kλ2

k′σ
(k)2
1

˜̀(kk′)
t (x1, x2)

)(∑N
k,k′=1 λ1

kλ2
k′σ

(k′)2
2

˜̀(kk′)
t (x1, x2)

) ,
|ρL(t)| ≤ |ρ|

where ˜̀(kk′)
t (x1, x2) is defined as in equation (4.21).

We see that ρ enters the formula for the instantaneous local correlation ρL in

the MVMD model, even though the latter is more complex than the constant value

ρ. Our aim is to find a value of ρ which matches the prices of options with payoff

as in equation (4.23) under shifted MVMD dynamics with market prices.

In order to do that we will make use of a model with uncertain parameters of

which the shifted MVMD is a Markovian projection. Indeed, as shown in Brigo

et al. [29], the MVMD model as in Definition 4.1.3 (without shift) is a Markovian

projection of the model

dξi(t) = µi ξi(t)dt+ σIii (t) ξi(t)dZi(t), i = 1, ..., n. (4.24)

Each Zi is a standard one dimensional Brownian motion with d 〈Zi, Zj〉t =

ρi,jdt, µi are constants, σI := [σI11 , . . . , σ
In
n ]T is a random vector independent of Z

and representing uncertain volatilities with I1, . . . , In being mutually independent.

More specifically, each σIii takes values in a set of N deterministic functions σki
with probability λki . Thus, for all times in (ε,+∞) with small ε we have

(t 7−→ σIii (t)) =


(t 7−→ σ1

i (t)) with Q probability λ1
i

(t 7−→ σ2
i (t)) with Q probability λ2

i
...

(t 7−→ σNi (t)) with Q probability λNi

Now, if we add a shift to each component as follows

ξ̃i(t) = ξi(t) + βie
µit, (4.25)

we obtain a model having the shifted MVMD model (4.20)-(4.22) as a Markovian

projection. This can easily be shown by Gyöngy’s lemma [74].
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Theorem 4.3.2. The shifted MVMD model is a Markovian projection of the

shifted MUVM model.

Proof. A straightforward application of Ito’s lemma shows that ξ̃(t) satisfies the

system of SDEs

dξ̃(t) = diag(µ) ξ̃(t) dt+ diag(ξ̃(t)− α(t)) AI(t) dW (t) (4.26)

where diag(α(t)) is a deterministic matrix whose i-th diagonal element is the shift

βie
µit and AI(t) is the Cholesky decomposition of the covariance matrix ΣI

i,j(t) :=

σIii (t)σ
Ij
j (t) ρij.

Define ṽ(t, ξ(t)) = diag(ξ̃(t) − α(t))AI(t). In order to show that the MVMD

model is a Markovian projection of the MUVM model, we need to show that

E[ṽṽT |ξ̃(t) = x̃] = σ̃ σ̃T (t, x) (4.27)

where σ̃(t, x) = diag(x)C̃(t, x)B and C̃ is defined as in (4.20).

Observing that

E[ṽṽT |ξ(t) ∈ dx] =
E[diag(ξ̃(t)− α(t)) Σ diag(ξ̃(t)− α(t)) 1{ξ̃(t)∈dx}]

E[1{ξ̃(t)∈dx}]
=

diag(x− α(t))
∑N

k1,...,kn=1 λ
k1
1 ...λ

kn
n V k1,...,kn(t)˜̀k1,...,kn

1,...,n;t (x) diag(x− α(t)) dx∑N
k1,...,kn=1 λ

k1
1 ...λ

kn
n

˜̀k1,...,kn
1,...,n;t (x) dx

and performing simple matrix manipulations, equation (4.27) is easily obtained.

Since we will infer the value of ρ from prices of options with payoff as in (4.23),

depending on the value of (S1, S2) at time T only, we can make computations under

the shifted MUVM rather than under the shifted MVMD, as these two models have

the same one-dimensional (in time) distributions. Computations under the shifted

MUVM model are easier to do (with respect to the shifted MVMD case) since

conditioning on {Ii = j}, ξi follows a shifted geometric Brownian motion with

volatility σji .

In particular we will focus on the bidimensional specification in which case the

shifted MUVM reduces to

97



dS1(t) = µ1 S1(t)dt+ σI11 (t) (S1(t)− β1e
µ1t)dW1(t)

dS2(t) = µ2 S2(t)dt+ σI22 (t) (S2(t)− β2e
µ2t)dW2(t)

(4.28)

where the Brownian motions W1, W2 have correlation ρ.

Once we have calibrated S1 and S2 independently, each to a univariate shifted

LMD model, we notice that the only parameter missing when we compute prices

of options having payoff as in (4.23) is ρ.

Definition 4.3.3. We define the implied correlation parameter in the shifted MVMD

model as the value ρ minimizing the squared percentage difference between implied

volatilities from options with payoff (4.23) under the shifted MVMD model and

market implied volatilities.

The correlation skew in SCMD via ρ

Now, assume to model the joint dynamics of (S1, S2) as a shifted SCMD model

instead. In this case

dS1(t) = µS1(t)dt+ ν1(t, S1(t)− β1e
µt)(S1(t)− β1e

µt)dW1(t),

dS2(t) = µS2(t)dt+ ν2(t, S2(t)− β2e
µt)(S2(t)− β2e

µt)dW2(t)
(4.29)

with

ν1(t, x) =
(∑N

k=1 λ
k
1σ
k
1 (t)2`kt (x)∑N

k=1 λ
k
1`
k
t (x)

)1/2

,

ν2(t, x) =
(∑N

k=1 λ
k
2σ
k
2 (t)2`kt (x)∑N

k=1 λ
k
2`
k
t (x)

)1/2 (4.30)

where the Brownian motions W1, W2 have correlation ρ. In this case the parameter

ρ really represents the true value of the instantaneous local correlation, as opposed

to the MVMD case. We still define the implied correlation as the value ρminimizing

the squared percentage difference between implied volatilities from options with

payoff (4.23) under the shifted SCMD model and market implied volatilities.

Pricing under the shifted MUVM

Now, we consider computing the price of options such as (4.23), namely options

on cross FX rates, under the shifted model. In general one has a loss of tractability

with respect to the non-shifted case. However, one can still express the price via a

semi-analytic formula involving double integration:
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e−rTE[(B −K)+] =

e−rT
N∑

i,j=1

λi1λ
j
2

∫ ∞
K

dB(B −K)

∫ ∞
−∞

dx1

n(x1; 0,Σi,j
1,1)n(Di,j(B, x1); 0, (1− ρ2)Σi,j

2,2)

B − α2F1(T )ex1−Σi,j1,1 − α1α2

(4.31)

where n(x;m,S) is the density function of a one-dimensional Gaussian random

variable with mean m and standard deviation S,

Di,j(B, x1) = ln

 B

F1(t)ex1−
Σ
i,j
11
2 + α1

− α2

− ln(F2(t)) +
Σi,j

22

2
− ρx1

√
Σi,j

22

Σi,j
11

,

and Σi,j
h,k = σihσ

j
k for h, k = 1, 2 and i, j = 1, . . . N . This follows from the fact that

the density of the product

B = S1S2 = (ξ1 + β1e
µ1T )(ξ2 + β2e

µ2T )

can be written as

pBT (B)dB = Q(BT ∈ dB) = E[1{BT∈dB}] =
N∑

i,j=1

λi1λ
j
2E
[
1{(ξi1+β1eµ1T )(ξj2+β2eµ2T )∈dB}

]
(4.32)

where
dξ1(t) = µ1 ξ1(t)dt+ σi1(t) ξ1(t)dW1(t)

dξ2(t) = µ2 ξ2(t)dt+ σj2(t) ξ2(t)dW2(t).

Now, we focus on a single term in the summation (4.32) and for simplicity we

drop the index i, j. Calling F1(t), F2(t) the t-forward asset prices and defining

xi = ln ξi
Fi(t)

+ Σii
2

, we can rewrite a single term as∫
dx1dx21{(F1(t)ex1−Σ11/2+α1)(F2(t)ex2−Σ22/2+α2)∈dB}n(x; 0,Σ) =(
− d

dB

∫
DB

dx1dx2n(x; 0,Σ)

)
dB

where n(x; 0,Σ) is the density of a bivariate normal distribution with mean equal

to zero and covariance matrix Σ defined as

Σ =

(
Σ11 ρ

√
Σ11Σ22

ρ
√

Σ11Σ22 Σ22

)
. (4.33)
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Observing that n(x; 0,Σ) = n(x1; 0,Σ11)n(x2 − ρx1

√
Σ22/Σ11; 0, (1 − ρ2)Σ22), in-

tegrating with respect to x2 and adding up the single terms in (4.32), we obtain

p(BT ) =
N∑

i,j=1

λi1λ
j
2

∫ ∞
−∞

dx1

n(x1; 0,Σi,j
1,1)n(Di,j(B, x1); 0, (1− ρ2)Σi,j

2,2)

B − α2F1(T )ex1−Σi,j1,1 − α1α2

from which equation (4.31) is easily derived.

4.4 Comparing correlation skews in the shifted

MVMD and SCMD

The aim of this section is to compare the shifted MVMD and the shifted SCMD

models in terms of implied correlation, analysing their performance in reproducing

triangular relationships.

Numerical case study with cross FX rates

Specifically, we consider the exchanges S1 = USD/EUR, S2 = EUR/JPY under a

shifted MUVM model with 2 components

S1(t) = X1(t) + β1e
(re−r$)t

S2(t) = X2(t) + β2e
(rY −re )t

with

dX1(t) = (re − r$)X1(t)dt+ σI11 (t)X1(t)dW 1,e
t

dX2(t) = (rY − re )X2(t)dt+ σI22 (t)X2(t)dW 2,Y
t

where re , r$, rY are the euro, dollar and yen interest rates, respectively, and

σI11 (t), σI22 (t) are as in equation (4.24). W 1,e
t and W 2,Y

t indicate that we are con-

sidering the dynamics of S1 and of S2, each under its own domestic measure, that

is the euro in the case of S1 and the yen in the case of S2.

We calibrate S1 and S2 independently, each to its own volatility curve, using 2

components and minimizing the squared percentage difference between model and

market implied volatilities. Then, we look at the product S1S2, representing the
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cross exchange USD/JPY, and we check whether the model is able to reproduce the

cross smile consistently with the smiles of the single assets. In particular, we find ρ

that minimizes the squared percentage difference between implied volatilities from

options on the basket S3 = S1S2 under the shifted MVMD model (the shifted

SCMD model) and market implied volatilities. In other words, we look at the

implied correlations under the MVMD model and the SCMD model.

When performing calibration on S3, we express both the dynamics of X1 and

of X2 under the yen:

dX1(t) = (re − r$ − ρσ1(t)σ2(t))X1(t)dt+ σ1(t)X1(t)dW 1,Y
t

dX2(t) = (rY − re )X2(t)dt+ σ2(t)X2(t)dW 2,Y
t ,

and then we calculate prices of options on

S3(t) = (X1(t) + β1e
(re−r$)t)(X2(t) + β2e

(rY −re )t).

All the data for our numerical experiments are downloaded from a Bloomberg

terminal. We start by considering data from 19th February 2015. The initial values

of S1, S2 are S1(0) = 0.878, S2(0) = 135.44. First we calibrate S1 and S2 using

implied volatilities from options with maturity of 6 months. Denoting

η1 =


√∫ T

0
σ1

1(s)2ds

T
,

√∫ T
0
σ2

1(s)2ds

T


η2 =


√∫ T

0
σ1

2(s)2ds

T
,

√∫ T
0
σ2

2(s)2ds

T


the T -term volatilities of the instrumental processes of S1 and S2, respectively,

λ1 = (λ1
1, λ

2
1),

λ2 = (λ1
2, λ

2
2)

the vector of probabilities of each component and β1, β2 the shift parameters, we

obtain

η1 = (0.1952, 0.0709), λ1 = (0.1402, 0.8598), β1 = 0.00068
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for the asset S1 and

η2 = (0.1184, 0.0962), λ2 = (0.2735, 0.7265), β2 = 0.9752

for the asset S2. Then, we perform a calibration on the cross product S3 =USD/JPY

using volatilities from call options with maturity of 6 months, finding the values:

ρMVMD(6M) = −0.6015

for the shifted MVMD model and

ρSCMD(6M) = −0.5472

for the shifted SCMD model. The higher value (in absolute terms) of the correlation

parameter in the shifted MVMD model is due to higher state dependence in the

diffusion matrix with respect to the shifted SCMD model. This is partly related

to Proposition 4.3.1. In other words, in order to achieve the same local correlation

as in the shifted SCMD model, the shifted MVMD model needs a higher absolute

value of ρ.

The corresponding prices and implied volatilities are plotted in Figure 4.1

whereas Table 4.1 reports the absolute differences between market and model

values corresponding to a few strikes. The reported plot shows that the shifted

MVMD model is better at reproducing market prices than the shifted SCMD

model. What is very remarkable in this example is that the shifted MVMD fits the

whole correlation skew with just one value of ρ.

As a second numerical experiment we repeat the calibration using prices with

maturity of 9 months. Specifically, we first calibrate S1 and S2 obtaining the values

η1 = (0.2236, 0.0761), λ1 = (0.0262, 0.9738), β1 = 0.0100

for the asset S1 and

η2 = (0.1244, 0.0497), λ2 = (0.7584, 0.2416), β2 = 0.7856

for the asset S2. We observe that the higher volatility now has the highest prob-

ability as opposed to the results found for 6 months options. Then, we perform a

calibration on the cross product S3 =USD/JPY using volatilities from call options

with maturity of 9 months, finding the values:

ρMVMD(9M) = −0.6199
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for the shifted MVMD model and

ρSCMD(9M) = −0.5288

for the shifted SCMD model. These values are comparable with those found for 6

months options. This shows that the model is quite consistent.

The corresponding prices and implied volatilities are shown in Figure 4.2 whereas

Table 4.2 reports some absolute differences between model and market values.

Overall, also in this case the shifted MVMD model outperforms the shifted SCMD

in terms of ability to reproduce market prices on the cross product.
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Figure 4.1: Calibration on 6 months options, from 19th February 2015. The implied
correlation parameter is ρ = −0.6015 for the shifted MVMD model (top) and
ρ = −0.5472 for the shifted SCMD model (bottom).
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T = 6 Months
K Shifted MVMD Shifted SCMD

107.16 0.0107 0.0188
114.12 0.0095 0.0463
118.3 0.019 0.0394
124.88 0.0045 0.0104
137.9 0.0026 0.0073

T = 6 Months
K Shifted MVMD Shifted SCMD

107.16 0.0004 0.0007
114.12 0.0004 0.0018
118.3 0.0011 0.0023
124.88 0.0006 0.0015
137.9 0.0022 0.007

Table 4.1: Calibration on 6 months options, from 19th February 2015. The tables
report absolute differences between market and model prices (top) and absolute dif-
ferences between the corresponding market and model implied volatilities (bottom).

4.5 Introducing random correlations in the

mixture dynamics

A single correlation parameter ρ may not be enough to fit prices on the cross asset.

To overcome this, we can allow for random correlations between the single assets

in the shifted MUVM model (4.28). Specifically,

dS1(t) = µ1 S1(t)dt+ σI11 (t) (S1(t)− β1e
µ1t)dW I1

1 (t)

dS2(t) = µ2 S2(t)dt+ σI22 (t) (S2(t)− β2e
µ2t)dW I2

2 (t)
(4.34)

where the Brownian motions W I1
1 , W I2

2 now have correlation ρI1,I2 . The correlation

parameter will therefore assume the value ρh,k in correspondence with a couple

(σh1 , σ
k
2) with probability λhλk.

Theorem 4.5.1. The shifted MUVM model with an uncertain correlation param-

eter has, as a Markovian projection, a shifted MVMD model solution of the SDE
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Figure 4.2: Calibration on 9 months options, from 19th February 2015. The implied
correlation parameter is ρ = −0.6199 for the shifted MVMD model (top) and
ρ = −0.5288 for the shifted SCMD model (bottom). The results are comparable
with the values obtained using 6 months options.

(4.20) but with equation (4.17) transformed into

V k1,...,kn(t) =
[
σkii (t) ρ

ki,kj
i,j σ

kj
j (t)

]
i,j=1,...,n

. (4.35)

Proof. The Markovian projection property can be easily shown by an application

of Gyöngy’s lemma, in a similar was as in the proof of Theorem 4.3.2.

In other words, the correlation between two generic instrumental processes Y k
i ,

Y h
j will depend not only on the assets Si, Sj, but will correspond to a specific

choice of the instrumental processes Y k
i , Y h

j themselves.
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T = 9 Months
K Shifted MVMD Shifted SCMD

104.2 0.2098 0.0961
112.84 0.0116 0.0485
117.91 0.0223 0.0329
122.49 0.0088 0.0089
144.25 0.0013 0.0025

T = 9 Months
K Shifted MVMD Shifted SCMD

104.2 0.0073 0.0034
112.84 0.0008 0.0024
117.91 0.0035 0.005
122.49 0.0028 0.0029
144.25 0.005 0.01

Table 4.2: Calibration on 9 months options, from 19th February 2015. The tables
report absolute differences between market and model prices (top) and absolute dif-
ferences between the corresponding market and model implied volatilities (bottom).

Cross FX rates study for shifted MVMD with random

correlations

As a numerical illustration we performed on the shifted MVMD model the same

experiment as in Section 4.4. We used 6 months options from 7th September 2015.

The initial values of the single FX rates are S1(0) = 0.8950, S2(0) = 133.345. In

this case the calibration of the shifted SCMD model is much worse, to the point

that there is no value of ρ that can fit any of the prices obtained through this

model. On the other hand, in the case of the shifted MVMD model, in particular

when introducing random correlations, the fit leads to quite good results. As in

the previous cases we independently calibrate S1=USD/EUR and S2=EUR/JPY

on the corresponding implied volatilities obtaining

η1 = (0.1803, 0.0916), λ1 = (0.0274, 0.9726), β1 = 0.0128

η2 = (0.1230, 0.0501), λ2 = (0.6575, 0.3425), β2 = 0.1867

and then we look at the cross exchange rate S3 = S1S2=USD/JPY. When per-

forming calibration using a shifted MVMD model with one correlation parameter
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only, we obtain

ρ = −0.6147,

whereas when using random correlations, we have

ρ1,1 = −0.8717, ρ1,2 = −0.1762, ρ2,1 = −0.6591, ρ2,2 = −0.2269.

The corresponding plots are shown in Figure 4.3, in connection with Table

4.3. In this case we also see that using random correlations improves the fit with

respect to the case with a single correlation parameter. Moreover, computing the

expectation and the standard deviation for the random correlation under the risk-

neutral measure Q, we obtain

EQ(ρi,j) = −0.5144

StdQ(ρi,j) = 0.2105

satisfying |EQ(ρi,j)−ρ| < StdQ(ρi,j)
2

. In other words, the absolute difference between

the Q-expected random correlation and the deterministic correlation is smaller

than half the Q-standard deviation. This means that the random correlation is on

average not that far from the deterministic value.

Finally, we repeat the same experiment using options with maturity of 9 months.

We find:

η1 = (0.2228, 0.0894), λ1 = (0.0177, 0.9823), β1 = 0.0104

η2 = (2.0968, 0.1064), λ2 = (0.000943, 0.999057), β2 = 1.1098.

When looking at the cross product S1S2=USD/JPY, we obtain

ρ = −0.7488

in the case of one single correlation parameter, and

ρ1,1 = −0.8679, ρ1,2 = −0.2208, ρ2,1 = −0.8303, ρ2,2 = −0.3270

in the case where random correlations are introduced. Corresponding plots and

absolute differences between market and model prices/implied volatilities can be

found in Figure 4.4 and Table 4.4, which show that the shifted MVMD model with
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Figure 4.3: Calibration of the MVMD model on 6 months options, from 7th Septem-
ber 2015. The calibration using one single correlation parameter is shown in the top
part which corresponds to a fitted value equal to ρ = −0.6147. The calibration using
multiple correlation parameters is shown in the bottom part, which corresponds to
ρ1,1 = −0.8717, ρ1,2 = −0.1762, ρ2,1 = −0.6591, ρ2,2 = −0.2269.

random correlations outperforms the constant-deterministic correlation model in

this case as well.

The values of expected random correlation and standard deviation under the

Q measure are

EQ(ρi,j) = −0.5063

StdQ(ρi,j) = 0.2411.

With respect to the case of 6 months options, we observe a movement of the Q-

expected random correlation away from the constant correlation. Moreover, if we

look at the terminal correlations, that is the correlation between S1(T ) and S2(T ),
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T = 6 Months
K Shifted MVMD Shifted MVMDRC

115.36 0.0359 0.02228
118.57 0.0016 0.0024
122.18 0.0042 0.0022
126.68 0.0008 1.18 ∗ 10−5

136.32 0.0003 1.94 ∗ 10−5

T = 6 Months
K Shifted MVMD Shifted MVMDRC

115.36 0.0036 0.0022
118.57 0.0002 0.0004
122.18 0.0018 0.0009
126.68 0.0011 1.159 ∗ 10−5

136.32 0.0025 0.0002

Table 4.3: Calibration on 6 months options, from 7th September 2015. The tables
report absolute differences between market and model prices (top) and absolute dif-
ferences between the corresponding market and model implied volatilities (bottom).

for T = 9 months, we obtain

ρ̂(9M) = −0.6835

in case ρ is deterministic and

ρ̂random(9M) = −0.5546

in case ρ is random. As a final observation, we remark that in case ρ is constant,

an application of Schwartz’s inequality shows that the absolute value of the ter-

minal correlation is always smaller than the absolute value of the instantaneous

correlation, as verified by the results above. One may wonder whether the same

inequality holds in case of random correlations, if we substitute the instantaneous

value with the mean of the random correlations. In this case it is not possible to

use Schwartz’s inequality as we did before and, indeed, the results obtained show

that the inequality does not hold, at least not for the example considered above.
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Figure 4.4: Calibration of the MVMD model on 9 months options, from 7th Septem-
ber 2015. The calibration using one single correlation parameter is shown in the top
part which corresponds to a fitted value equal to ρ = −0.7488. The calibration using
multiple correlation parameters is shown in the bottom part, which corresponds to
ρ1,1 = −0.8679, ρ1,2 = −0.2208, ρ2,1 = −0.8303, ρ2,2 = −0.3270.

4.6 Conclusions

We introduced a shifted MVMD model where each single asset follows shifted LMD

dynamics which are combined so that the mixture property is lifted to a multivari-

ate level, in the same way as for the non-shifted case [28]. In this framework, we

analysed the implied correlation from cross exchange rates and compared the re-

sults with those in the shifted SCMD model where the single assets are connected

by simply introducing instantaneous correlations among the Brownian motions

driving each asset.

Finally, we generalized the MUVM model in [28], having MVMD as a Marko-

vian projection, to a shifted model with random correlation, achieving more flexi-
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T = 9 Months
K Shifted MVMD Shifted MVMDRC

112.84 0.0125 0.0069
116.99 0.0011 0.0003
121.04 0.0011 0.0002
126.18 0.0002 3.29 ∗ 10−5

141.66 3.46 ∗ 10−5 2.2 ∗ 10−5

T = 9 Months
K Shifted MVMD Shifted MVMDRC

112.84 0.0054 0.0028
116.99 0.0013 0.0004
121.04 0.004 0.0007
126.18 0.0026 0.0005
141.66 0.01 0.0003

Table 4.4: Calibration on 9 months options, from 7th September 2015. The tables
report absolute differences between market and model prices (top) and absolute dif-
ferences between the corresponding market and model implied volatilities (bottom).

bility. This allows one to capture the correlation skew better. Indeed, the numerical

experiments which we have conducted show that this model may be able to consis-

tently reproduce triangular relationships among FX cross rates, or in other words

to reproduce the implied volatility of a cross exchange rate in a consistent way

with the implied volatilities of the single exchange rates.

One possible further use of the models given here is in proxying the smile for

illiquid cross FX rates resulting from the product of two liquid FX rates. While one

would have to find the relevant correlation parameters, possibly based on historical

estimation with some adjustments for risk premia, the models presented here allow

us to infer the detailed structure of the cross FX rate smile in an arbitrage free

way.
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4.7 Appendix

In this Appendix we provide the details leading to definition 4.2.1. We start by

applying a shift to each component Y k
i of each asset as follows

Ski (t) = Y k
i (t) + βie

µit.

Keeping in mind that Y k
i satisfies

dY k
i (t) = µiY

k
i (t)dt+ σki (t)Y k

i (t)dZi(t) d〈Zi, Zj〉 = ρijdt, (4.36)

we obtain, by applying Ito’s formula

dSki (t) = µiS
k
i (t)dt+ σki (t)

(
Ski (t)− βieµit

)
dZi(t). (4.37)

The corresponding asset price Si will therefore be a shifted LMD model with shift

equal to βie
µit. In order to find the dynamics of the whole multidimensional process

S(t), that is the process corresponding to S(t) after having applied the shift, we

look for an SDE of the type

dS(t) = diag(µ)S(t)dt+ diag(S(t))C̃(t, S(t))BdW (t) (4.38)

where ρ = BBT such that the corresponding density satisfies

pS(t)(x) =
N∑

k1,k2,...kn=1

λk1
1 · · ·λknn ˜̀k1,...,kn

1,...n;t (x) (4.39)

˜̀k1,...,kn
1,...n;t (x) = p

[S
k1
1 (t),...,Sknn (t)]T

(x). (4.40)

In other words, the density pS(t) is obtained by mixing the single densities pSki (t)(x)

in all the possible ways.

In order to find the diffusion matrix C̃, we compute the Fokker-Planck equa-

tions for pS(t) and ˜̀k1,...,kn
1,...n;t . Defining ã(t, S(t)) = (C̃B)(C̃B)T where C̃i denotes the

i-th row of C̃, we obtain

∂

∂t
pS(t)(x) = −

n∑
i=1

∂

∂xi

[
µixipS(t)(x)

]
+

1

2

n∑
i,j=1

∂2

∂xi∂xj

[
ãij(t, x)xixjpS(t)(x)

]
(4.41)
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and

∂ ˜̀k1,...,kn
1,...n;t (x)

∂t
= −

n∑
i=1

∂

∂xi

(
µkii xi

˜̀k1,...,kn
1,...n;t (x)

)
+

1

2

n∑
i,j=1

∂2

∂xi∂xj
σkii (t)(xi − βieµ

ki
i )σ

kj
j (t)(xj − βjeµ

kj
j t)ρi,j ˜̀

k1,...,kn
1,...n;t (x).

Making use of equation (4.39) and the equation above

∂

∂t
pS(t)(x) =

N∑
k1,k2,...kn=1

λk1
1 · · ·λknn

∂

∂t
˜̀k1,...,kn
1,...n;t (x) =

=
N∑

k1,k2,...kn=1

λk1
1 · · ·λknn

[
−

n∑
i=1

∂

∂xi

(
µixi ˜̀

k1,...,kn
1,...n;t (x)

)
+

1

2

n∑
i,j=1

∂2

∂xi∂xj
σkii (t)(xi − βieµi)σ

kj
j (t)(xj − βjeµjt)ρi,j ˜̀k1,...,kn

1,...n;t (x)
]
.

On the other hand, from equation (4.41)

∂

∂t
pS(t)(x) = −

n∑
i=1

∂

∂xi

[
µixi

(
N∑

k1,k2,...kn=1

λk1
1 · · ·λknn ˜̀k1,...,kn

1,...n;t (x)

)]

+
1

2

n∑
i,j=1

∂2

∂xi∂xj

[
ãij(t, x)xixj

(
N∑

k1,k2,...kn=1

λk1
1 · · ·λknn ˜̀k1,...,kn

1,...n;t (x)

)]
.

Finally, comparing the two expressions obtained for ∂
∂t
pS(t)(x)

1

2

n∑
i,j=1

∂2

∂xi∂xj

N∑
k1,k2,...kn=1

λk1
1 · · ·λknn

[
ãij(t, x)xixj−

σkii (t)(xi − βieµi)σ
kj
j (t)(xj − βjeµjt)ρi,j

]
˜̀k1,...,kn
1,...n;t (x) = 0

so that

aij =

∑N
k1,k2,...kn=1 λ

k1
1 · · ·λknn σ

ki
i (t)(xi − βieµi)σ

kj
j (t)(xj − βjeµjt)ρi,j ˜̀k1,...,kn

1,...n;t (x)

xixj
∑N

k1,k2,...kn=1 λ
k1
1 · · ·λknn ˜̀k1,...,kn

1,...n;t (x)
.
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processes. Mathematical Finance, 13(3):345–382, 2003.

[36] P. Carr and R. Lee. Realized Volatility and Variance: Options via Swaps.

available at http://math.uchicago.edu/ rogerlee/OVSwithAppendices.pdf,

2007.

[37] P. Carr and R. Lee. Volatility Derivatives. Annual Review of Financial

Economics, 1(1):319–339, 2009.

[38] P. Carr and L. Wu. A tale of two indices. The Journal of Derivatives,

13(3):13–29, 2006.

[39] M. Chernov, A Ronald G., E. Ghysels, and G. Tauchen. Alternative models

for stock price dynamics. Journal of Econometrics, 116(1):225–257, 2003.

[40] G. Choudhury, D.M. Lucantoni, and W. Whitt. Multidimensional transform

inversion with application to the transient m/g/1 queue. Ann. Appl. Prob.,

4:719–740, 1994.

[41] A. M. Cohen. Numerical methods for Laplace transform inversion. Springer,

2007.

[42] R. Cont and T. Kokholm. A consistent pricing model for index options and

volatility derivatives. Mathematical Finance, 23(2):248–274, 2013.

[43] J. Cox, J. Ingersoll, and S. Ross. A theory of the term structure of interest

rates. Econometrica, 53(2):385–407, 1985.

[44] M. Craddock, D. Heath, and E. Platen. Numerical inversion of Laplace

transforms: A survey of techniques with applications to derivative pricing.

Research Paper Series 27, Quantitative Finance Research Centre, University

of Technology, Sydney, 1999.
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