mRNP quality control goes regulatory

Oliver Mühlemann¹ & Torben Heick Jensen²

¹Dept. of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

²Centre for mRNP Biogenesis and Metabolism, Dept. of Molecular Biology and Genetics, C.F. Møllers Allé 3, Building 1130, Aarhus University, 8000 Aarhus C., Denmark

Corresponding authors:
Mühlemann, O. (oliver.muehlemann@dcb.unibe.ch)
Jensen, T.H. (thj@mb.au.dk)
Abstract

The accuracy of eukaryotic gene expression relies on efficient quality control (QC). Virtually all steps in the gene expression pathway *en route* from transcription to translation are error-prone and QC systems have evolved to utilize many of these biochemical processes as checkpoints to monitor the production or function of mRNA-protein particles (mRNPs). Mechanistically, such evaluation of mRNP fitness is based on a competition between the opposing activities of mRNP biogenesis/function and turnover. In fact, quite subtle alteration of any parameter can tip the balance between mRNP persistence and degradation, and therefore QC checkpoints also comprise perfect opportunities for controlling cellular levels of individual or even entire families of transcripts. From this perspective, QC and gene regulation represent two outcomes of the same molecular process.
Omnipresent mRNP QC

The life of a eukaryotic mRNA is astonishingly complex: from its birth in the nucleus to its cytoplasmic demise it undergoes a series of interconnected biochemical reactions, starting with its synthesis by RNA polymerase II (RNAPII), followed by the transcription-coupled addition of a 7-methylguanylate cap to its 5' end, removal of its introns and cleavage and polyadenylation of its 3' end 1-3. In addition to these covalent chemical changes, each mRNA has to correctly interact with a specific ensemble of RNA-binding proteins to form the mRNP that constitutes the functional entity of the message. Some of these proteins accompany the mRNA all the way until it is translated or degraded, while others associate in a location-specific or temporal manner to convey properties to the mRNP of only transient utility. Regardless of their exact nature, steps in the biogenesis and remodelling of mRNPs are susceptible to mistakes. To reduce the error frequency of the steady-state mRNP population, cells have evolved QC systems at several levels in both the nucleus and in the cytoplasm 4-7 (Figure 1). These often take advantage of the normal reactions of mRNP biogenesis or utility where the welfare of the concerned mRNP is directly revealed. Indeed, most QC systems described so far intervene if the efficiency by which the mRNP is produced and transported is inadequate or if it performs poorly in translation. Current examples of QC checkpoints include the processes of mRNA capping 8, 9, splicing 10, 3'-end formation 11-15, mRNP nuclear exit 16-18 and interaction with ribosomes 19-25.

For an in-depth discussion of the constituent factors of QC systems and their mechanisms of action, we refer the reader to recent reviews on nuclear 5.
and cytoplasmic QC 26-30. Here, we emphasize that QC systems are not dedicated entities evolved only to survey mRNP performance. Instead, QC is often based on the somewhat surprising intimate connection between common cellular RNA degradation activities and factors involved in productive mRNP transactions. In fact, degradation factors, or the proteins recruiting them, often participate themselves in mRNP production or remodelling. The term QC therefore often describes a competition between the opposing processes of biogenesis/function and turnover, which permits the elimination of molecules or complexes that do not meet certain standards. Interestingly however, although QC processes normally serve to remove aberrant material, they can be readily exploited by the cell to also serve gene regulatory purposes, and because most mRNP biogenic and metabolic activities are functionally intertwined 2, 3, there is ample opportunity for such regulation. Here, we aim to illustrate this concept by recently published examples.

Balancing biogenesis and function with decay

Whenever an mRNP fails to pass QC, its progression is restricted with the typical result that its mRNA component is degraded by ribonucleases. Recycling of particles retained by QC systems back into the functional pool is a formal possibility, but published examples are lacking. Likewise, repair of defective RNA can occur in special cases as part of stress response pathways 31, but instances of aberrant mRNA repair by QC systems have so far not been reported. Instead, and as mentioned above, the kinetic competition between steps in normal mRNP biogenesis or function and RNA turnover represents a unifying principle in many QC processes (reviewed in 4.
The outcome of this competition between normal maturation/function and commitment to mRNA degradation can be viewed as a double pan balance in which one pan contains mRNPs that passed QC and the other contains complexes whose mRNAs are destined for degradation (Figure 2).

For any individual mRNP species, the fraction ending up in either pan of the balance ultimately depends on the competing rate constants, which we refer to as k_{normal} (rate constant for the normal maturation step or function) and k_{aberrant} (rate constant for commitment to mRNA decay). Although QC systems are not yet understood in sufficient detail to allow a precise determination of these rate constants and make quantitative statements, they are still very useful as tools for discussion. Due to the inherent error rate of every step of mRNA production and mRNP assembly, any population of a specific mRNP species will harbour a fraction of particles that are defective or have reduced functionality. These mRNPs have a lower $k_{\text{normal}}/k_{\text{aberrant}}$ ratio compared to their flawless mRNP cousins, resulting in their differential distribution between the two pans and hence in efficient QC (Figure 2A). For example, aberrant mRNPs may be less efficient substrates for the processing reaction or functional activity in question (i.e. a reduced k_{normal}) or they may have acquired degradation-promoting features (i.e. an increased k_{aberrant}). Notably, when the overall capacity of a particular decay pathway is exceeded because of suboptimal mRNP production/function and/or because a key degradation factor is inactivated, aberrant mRNAs will accumulate in the cell. Indeed, it is under such conditions that most QC pathways have been revealed experimentally.
If we apply the double pan balance concept to the entire cellular population of particles, each mRNP species will have its own intrinsic average $k_{\text{normal}}/k_{\text{aberrant}}$ ratio that determines which fraction will survive a given QC checkpoint. Thus, extrinsically induced changes affecting the overall assembly, processing or degradation rates, e.g. by modification of the activity of an enzyme required for mRNP production/function or decay, will alter the species-specific $k_{\text{normal}}/k_{\text{aberrant}}$ ratio and hence the proportion of surviving mRNPs (Figure 2B). This is because mRNA-inherent features influencing k_{normal} or k_{aberrant} are diverse and of different strengths, thereby providing a wide and gradual spectrum of possible responses to e.g. stress or changed growth conditions. The concentration of a single mRNP species may also be specifically regulated via alteration of one or several of its constituents, changing the k_{normal} and/or k_{aberrant} of that species only. In such considerations, the system controls gene expression and the distinction between mRNP QC and gene regulation becomes arbitrary.

Nuclear QC systems at work

As a general nuclear surveillance measure, QC systems in this locale efficiently remove mRNAs undergoing slow or aberrant 5’ capping, splicing or 3’-end formation (reviewed in 6, 33). Moreover, QC deals with malformed mRNPs, presumably via their inability to mature in a timely manner 14. While it is not known how much ‘QC activity’ is invested in these tasks during normal cellular growth, studies from several eukaryotic model systems have shown that nuclear QC machineries are constantly kept busy by the ubiquitous activity of RNAPII outside protein-coding genes. This is because large
portions of eukaryotic genomes are transcribed, often on both strands and in a quite promiscuous manner \(^{34-36}\). As many of these transcripts are not destined for cytoplasmic translation or immediate nuclear usage \(^{37-41}\), the majority are under physiological conditions rapidly removed and accumulate only when QC components (e.g. the 3'-5' exo- and endoribonucleolytic RNA exosome or its co-factors) are artificially inhibited \(^{37, 41}\). Hence, cryptic unstable transcripts (CUTs) from *Saccharomyces cerevisiae* \(^{37}\) or promoter upstream transcripts (PROMPTs) from human cells \(^{41, 42}\) constitute examples where the balance between maturation and decay is tilted virtually all the way towards complete degradation. In *S. cerevisiae*, transcription termination of CUTs by the Nrd1p/Nab3p/Sen1p complex is aided by Nrd1p/Nab3p binding sites in the affected RNA and is directly coupled to their degradation by the RNA exosome aided by its co-activator TRAMP \(^{39}\). Although human exosome co-factors involved in PROMPT turnover have recently been identified, it is not yet clear how tightly the degradation of these transcripts is linked to the transcription termination event \(^{43}\). Finally, whether situations exist that tip the balance towards preferential stabilization of CUTs/PROMPTs to yield potentially functional RNAs remains to be seen.

Shifting the balance: Selective recruitment of QC activity

CUT transcription can provide regulatory function by impacting the activity of a closely positioned downstream gene \(^{44-47}\). This regulation is imposed by the CUT transcription event itself and therefore likely leaves the resulting CUT RNA as a disposable by-product for exosomal degradation. In related instances, the Nrd1p/Nab3p/Sen1p complex is also involved in the premature
transcription termination of genes, hereby hindering their production of full-length gene transcripts. The *NRD1* gene itself is a particularly interesting case as it is subjected to auto-regulation by Nrd1p-dependent termination and exosomal degradation in about 80 % of all transcription events (Figure 3A). Such dramatic dampening of *NRD1* mRNA synthesis is guided by the presence of Nrd1p/Nab3p binding sites in the 5’ UTR and coding region of the *NRD1* mRNA. Thus, gene expression can be selectively downregulated by directed recruitment of QC factors. An intriguing glimpse of potentially complex interactions impacting this regulation was recently provided by the demonstration that the *S. cerevisiae* MAP kinase Mpk1p can prevent Nrd1p/Nab3p/Sen1p-dependent transcription termination of the *FKS2* gene by blocking the recruitment of the complex to RNAPII.

Exploitation of QC factors for gene regulatory purposes also occurs at the post-transcriptional level. In one example, the auto-regulated expression of the *NAB2* gene, encoding the *S. cerevisiae* nuclear RNA poly(A) binding protein (PABP), relies on a stretch of 26 adenosine residues in the *NAB2* 3’UTR (Figure 3B). Proper 3’ end formation of *NAB2* mRNA appears to occur by the non-conventional 3’ trimming of extended *NAB2* mRNA species by the nuclear exosome component Rrp6p, and the TRAMP factor Trf4p, eventually resulting in polyadenylation near or within the *A*₂₆ stretch. Presumably via binding to the *A*₂₆ sequence, rising levels of Nab2p prevents polyadenylation at this site and instead shifts the balance towards Rrp6p-dependent degradation of *NAB2* mRNA. The mechanism by which Nab2p sensitizes the transcript to exosomal-decay is not known, but may depend on the ability of Nab2p to recruit Rrp6p (THJ, unpublished observation).
Moreover, this involvement of QC factors in the ‘normal’ 3’ end formation process appears to be of a broader nature as a related phenomenon has been reported for the *S. cerevisae CTH2* mRNA. It is also a strategy utilized in a second, conceptually related example from *Schizosaccharomyces pombe*. Here, vegetative cells are maintained by the direct recruitment of nuclear RNA exosome activity for the selective elimination of an estimated >20 meiotic mRNAs, whose protein products would otherwise adversely affect growth (Figure 3C). Again, PABP is involved in the process: the nuclear *S. pombe* Pab2p protein, the homolog of mammalian PABPN1, physically associates with Rrp6p. Remarkably, poly(A) tail addition by the conventional *S. pombe* poly(A) polymerase, Pla1p, appears to be underlying Pab2p/exosome recruitment to RNA, demonstrating that destabilization through polyadenylation, which is a hallmark for TRAMP-associated enzymes, can also be achieved by a regular poly(A) polymerase. Pab2p/exosome specificity towards meiosis-specific RNAs is achieved with the help of the RNA-binding protein Mmi1p, which belongs to the YTH family and interacts with ‘determinant of selective removal’ (DRS) regions residing in the 3’ ends of these transcripts. From this position, Mmi1p is thought to aid Pab2p/Rrp6p recruitment and at the same time interfere with 3’ end processing of these pre-mRNAs, which as a consequence become easy preys for the exosome. During meiosis, continuous degradation is inhibited, presumably by sequestration of Mmi1p away from meiosis-specific mRNAs and into nuclear ‘Mei2 dots’, microscopically detectable foci consisting of the meiosis-specific Mei2p protein and additional components. Collectively, these examples of QC factor-mediated post-transcriptional gene regulation challenge the
traditional view that nuclear PABPs solely function in poly(A) tail biogenesis of regular mRNA: they may in addition facilitate the recruitment of QC factors, resulting in mRNA decay unless the targeted mRNP has evolved other means to deflect this nuclear ribonucleolytic challenge (e.g. preventive cis-elements or trans-factors, or a rapid expedition into the cytoplasm) 58.

Shifting the balance: Modification of QC activity

Gene expression control by altering nuclear QC activity has been well documented in the yeasts *S. cerevisiae* and *S. pombe*. It is based on the widespread antisense (as) transcription of these genomes and the ability of RNA degradation activities to rapidly alter cellular levels of such molecules 59-64. A prime example is the as-transcription through the *S. cerevisiae* PHO84 gene 59, 60 (Figure 4). Because *PHO84* asRNA negatively regulates gene sense transcription through chromatin modification and histone deacetylation of the *PHO84* promoter, and because it is a target of the nuclear exosome, QC activity dictates cellular levels of both as and sense RNAs. Along these lines, *PHO84* gene silencing is observed in ageing cells, where less Rrp6p is recruited to the *PHO84* locus than in young cells 60. Notably, Rrp6p abundance remains unchanged during ageing, which argues for a post-translational regulation of the Rrp6p activity, but the exact mechanism still needs to be worked out.

Changing intracellular Rrp6p levels represents an alternative way to modulate Rrp6p activity, as exemplified by the switch from mitosis to meiosis in *S. cerevisiae*: at the onset of meiosis, Rrp6p is degraded, leading to the stabilization of multiple so-called meiotic unannotated transcripts (MUTs) 65.
As diploid cells lacking Rrp6p cannot undergo efficient meiotic development, this sudden switch in the nuclear repertoire of ncRNA may have important consequences for the meiotic gene expression program.

A related example is provided by the asRNA-mediated regulation of *S. cerevisiae* GAL genes required for galactose metabolism \(^{61}\). Under conditions of GAL gene repression, asRNA expression through the GAL1-10 cluster leads to recruitment of the Rpd3 histone deacetylation complex and suppression of the GAL1-10 promoter. The asRNA is also here targeted by TRAMP/exosome, and since exosome activity is affected by carbon source supply \(^{10}\), it is tempting to speculate that this constitutes at least part of the GAL gene regulatory circuit. As ncRNAs are thought to participate in the regulation of numerous catabolic genes, modulation of TRAMP/exosome activity is likely to broadly contribute to changes in gene expression programs upon changes in nutrient availability. Moreover, the perspectives for gene expression regulation via control of asRNA levels by the regulation of QC factor activity are enormous, as turnover of asRNAs is not confined to the exosome. For example, of 1658 Xrn1p-sensitive unstable transcripts (XUTs; ncRNAs destabilized by the major cytoplasmic 5'→3' exonuclease Xrn1p) identified in a recent genome-wide survey, 66% were antisense to open reading frames \(^{62}\). Given the increasing realization that sense-antisense RNA pairs also impact biological processes in higher eukaryotic cells, which also harbour their stocks of yeast-like QC factors, this type of regulation is likely evolutionary conserved.

QC at the level of translation: NMD, NSD and NGD
Even after mRNPs engage with the translation apparatus, QC ensues. Failure of ribosomes to terminate translation properly commonly triggers the rapid destruction of the concerned mRNA \(^1\), \(^4\), \(^{26}\), which under certain conditions is accompanied by degradation of the involved ribosomes \(^{66},^{67}\). Well documented examples include transcripts harboring a premature termination codon (PTC) targeted by nonsense-mediated decay (NMD) (reviewed in \(^{30},^{27},^{29}\)), mRNAs that lack a termination codon targeted by nonstop mRNA decay (NSD) \(^{19},^{20}\), and mRNAs with ribosomes stalled at stable secondary structures or at a stretch of rare codons targeted by no-go mRNA decay (NGD) \(^{21}\).

Recent studies suggest that NSD and NGD might be mechanistically related processes. First, translation of the poly(A) tail of a nonstop mRNA generates a poly-lysine chain that was reported to stall ribosomes by clogging their exit tunnels \(^{68}\), which essentially creates a no-go situation. Second, NSD and NGD both involve the release factor eRF1 homolog Pelota (Dom34p in yeast) and the eRF3 homologous GTPase Hbs1p \(^{21},^{69}\). In addition to these two release factor-mimicking proteins \(^{70},^{71},^{72}\), the yeast E3 ubiquitin ligase Ltn1p was recently found to mark the nascent peptides produced from nonstop mRNAs for proteasomal degradation \(^{68}\), revealing an interesting conceptual analogy to the bacterial tmRNA-based surveillance system. In bacteria, a unique bi-functional aminoacylated transfer-messenger RNA (tmRNA) binds to the stalled ribosome, allows it to resume translation and serves as a template for addition of a peptide tag to the nascent polypeptide chain that induces its rapid proteolysis \(^{73}\). Concerning \(k_{\text{normal}}/k_{\text{aberrant}}\) ratios (Figure 2), nonstop mRNAs are presumably efficiently recognized aberrant
transcripts with the balance tilted strongly towards decay, whereas the frequency and duration of ribosome stalling on NGD substrates to a large extent will depend on extrinsic factors (e.g. temperature, availability of helicases, tRNA concentration, etc.). Thus, although specific examples of gene regulation by NGD have not yet been reported, a rich potential for exploitation of QC factors exists.

NMD at the crossroad between QC and gene regulation

NMD represents the most intensively studied QC system, not the least because it has long been recognized as an important modulator of the clinical manifestations of about 30% of all known disease-associated mutations. NMD has traditionally been portrayed as a QC process that rids cells of faulty mRNAs with prematurely truncated ORFs. However, transcriptome-wide studies from different species have revealed a significant number of functional mRNAs targeted by NMD, demonstrating that it also undertakes translation-dependent post-transcriptional gene regulation (reviewed in [27-29, 75]). Physiological NMD targets are usually downregulated moderately (2 – 5 fold, [76]), whereas classical PTC-containing substrates tend to swing the balance towards decay more dramatically by reducing transcript levels 10 – 50 fold.

The precise mode of selecting mRNAs for the NMD pathway is not yet understood. However, data from both *S. cerevisiae* and human cells suggest an evolutionarily conserved core mechanism at the heart of which there is a kinetic competition between PABPC1 (the major human cytoplasmic PABP - Pab1p in yeast) and the NMD factor UPF1 for a mutually exclusive interaction with eRF3 (Sup35p in yeast) [77, 78] (Figure 5). According to this model, the
eRF3-PABPC1 interaction is required for proper mRNA translation termination, while the competing eRF3-UPF1 interaction represents the first step towards NMD (reviewed in 78, 80). A key determinant for efficient eRF3-PABPC1 interaction is the physical distance between eRF3 bound to the ribosome stalled at the termination codon and PABPC1 bound to the poly(A) tail. The larger this distance, the less efficient is the eRF3-PABPC1 interaction, increasing the likelihood of UPF1 interference and congregation of other NMD components. Consequently, any mRNP rearrangements that alter the structure of the 3' UTR are predicted to affect mRNA half-life and comprise a possibility for gene regulation 80, 81. This mode of regulation has so far only been demonstrated with engineered reporter gene constructs 81 and physiological examples are awaiting discovery.

After identification as an NMD substrate (i.e. after sorting to the right pan in Figure 2A), the RNA moiety of the mRNP is degraded in different ways depending on the species. In yeast, degradation of NMD substrates involves deadenylation, decapping and exonucleolytic decay 82-85. In Drosophila and human cells, the metazoan-specific NMD factor and endonuclease SMG6 cuts substrates in the vicinity of the stalled ribosome 86-88, although there is also evidence for exonucleolytic decay triggered by deadenylation and decapping in human cells 89-91, 92.

Given its role as an effector of 3 – 10 % of all cellular mRNAs 75, the activity and substrate selectivity of the NMD system is expected to be controlled by extrinsic signals. For example, during the differentiation of myoblast cells to myotubes, the overall efficiency of NMD diminishes as a consequence of the instigation of another mRNA turnover process called
Staufen-mediated mRNA decay, which competes for the rate-limiting UPF1 protein. This leads to de-repression of the myogenin mRNA, which encodes a protein required for myogenesis ⁹³. Similarly, cellular stress such as hypoxia or amino acid deprivation has also been found to reduce NMD potency, resulting in increased levels of numerous mRNAs encoding proteins associated with the respective stress response ⁹⁴, ⁹⁵. Furthermore, a recent discovery revealed that inhibition of NMD in neurons of the developing brain up-regulates NMD-sensitive mRNAs encoding neural-specific factors ⁹⁶. Interestingly, the underlying mechanism conferring NMD down-modulation depends on binding of the developmentally regulated neuron-specific microRNA miR-128 to the 3'UTR of the UPF1 mRNA, and miR-128 over-expression or UPF1 depletion in neural stem cells individually promoted a neural differentiation phenotype ⁹⁶. Finally, two recent publications revealed auto-regulation of NMD factors by demonstrating that most mRNAs encoding these factors are themselves targeted by NMD ⁷⁶, ⁹⁷. While this feedback control on the one hand serves to buffer NMD activity against uncontrolled fluctuations caused by genetic and environmental perturbations, Wilkinson and colleagues also identified cell type-specific and developmental regulation of the NMD pathway ⁹⁷. Altogether, these examples emphasize the role of NMD in physiological gene expression regulation and most likely represent only the tip of a slowly surfacing iceberg.

Concluding remarks

By examples we have aimed to illustrate how the distinction between QC and gene regulation is often blurred. Future discoveries and more detailed
dissection of the various molecular processes affecting the quality and quantity of expressed genetic information will further scrutinize this concept and reveal its validity and limitation. Irrespectively of the specific model, current data demonstrate that the life of an mRNA is a tightrope walk with decay factors lurking all around. mRNP constituents can be friend or foe and much remains to be learned about when mRNA interactors function as bodyguards or assassins. Studies of mRNP component’s ‘group dynamics’ should reveal some of these secrets.

Acknowledgments

We thank Manfred Schmid, Hasmik Yepiskoposyan, Søren Lykke-Andersen and Francoise Stutz for valuable comments on the manuscript. Research in the lab of O.M. is supported by the Swiss National Science Foundation (31003A-127614; CRSII3 136222), the European Research Council (StG 207419) and the Kanton Bern. Research in the lab of T.H.J is supported by the Danish National Research, the NOVO Nordisk and the Lundbeck foundations as well as the Danish Cancer Society.
Figure legend

Figure 1. Quality control (QC) of mRNP occurs at several checkpoints along the pathway of gene expression. Errors during RNA transcription, capping, splicing, polyadenylation, nuclear export and translation can all lead to faulty transcripts that are retained and/or removed by degradation activities (thin red arrows). The fittest fraction of cellular mRNAs avoid QC to be correctly processed and assembled into functional mRNPs, that engage as templates for protein synthesis before they finally are also degraded (thick blue arrow).

Figure 2. Schematic illustration of the balance between mRNP function and decay. The amount of mRNP persisting after a given step in its biogenesis or after a functional task is determined by the net outcome between two competing rate constants: the rate of mRNP production/function (k_{normal}) and the rate of commitment to decay (k_{aberrant}). Modulating this balance alters mRNP abundance and depending on the perspective, this can be perceived as removal of faulty mRNP (A) or as changing the relative mRNP distribution in the cell (B).

(A) When applied to the population of a single mRNP species (individual mRNPs denoted by a hexagon) that contains a majority of functional particles (green) and a smaller number of defective, or less functional, particles (red), the competition between k_{normal} and k_{aberrant} identifies and removes aberrant mRNP. Thus, the system performs QC.

(B) When applied to a population of different mRNP species (here three depicted as triangles, squares and ovals, respectively) that rely on the same assembly, processing and degradation activities, extrinsically induced
changes of one of these parameters will affect $k_{\text{normal}} / k_{\text{aberrant}}$ differently for each individual mRNP species. This will result in an altered relative abundance of the different mRNP species. Thus, the same molecular process as in (A) is now performing gene regulation.

Figure 3. Gene regulation accomplished by the selective recruitment of nuclear QC factors. (A) Auto-regulation of Nrd1p levels in *S. cerevisiae* is achieved by the premature transcription termination of the *NRD1* gene directed by the binding of the Nrd1p/Nab3p/Sen1p complex (blue oval) to the nascent *NRD1* RNA. Subsequent exosome (red pacman) recruitment results in the elimination of the prematurely terminated transcripts. (B) Nab2p, the nuclear PABP of *S. cerevisiae*, negatively regulates its own expression by binding to a stretch of 26 genomically encoded adenosines (A26) in the 3’ UTR of the *NAB2* RNA. In the absence of Nab2p at this site (low intracellular Nab2p concentrations), Rrp6p of the nuclear exosome trims the 3’ end of the transcript down to the A26 sequence, whereafter poly(A) polymerase (Pap1p) produces a poly(A) tail, leading to stable *NAB2* RNA. At high intracellular Nab2p levels, the factor binds to the A26 sequence and directs complete target degradation by Rrp6p, reducing *NAB2* RNA levels. (C) A set of mRNAs coding for meiosis-specific proteins is rapidly degraded in vegetative *S. pombe* cells due to the direct recruitment of Rrp6p and the exosome by the nuclear PABP Pab2p. Exosome/Pab2p presence is furthered, and hence specified, by the RNA-binding protein Mmi1p, which targets the determinant of selective removal (DRS) regions in the 3’ UTRs of these mRNAs. During meiosis, Mmi1p is sequestered away from DRS-containing mRNAs into
meiosis-specific foci, so-called ‘Mei2 dots’, thereby allowing for the cytoplasmic accumulation of DRS-containing transcripts.

Figure 4. Gene regulation accomplished by modulating the activity of nuclear QC factors. *PHO84* gene activity in *S. cerevisiae* is controlled by the overlapping production of asRNA. (A) In young cells, Rrp6p is targeted to *PHO84* asRNA resulting in unperturbed transcription of *PHO84* RNA. (B) In aged cells, however, Rrp6p recruitment to the *PHO84* locus is diminished, allowing asRNA to accumulate with the consequent dampening of *PHO84* RNA transcription.

Figure 5. Model for NMD-mediated gene regulation. Metazoan PABP and UPF1 proteins compete for a mutually exclusive interaction with the release factor complex eRF3/eRF1 at the terminating ribosome. Binding of PABP promotes proper translation termination and leaves the mRNA unaffected, whereas binding of UPF1 signals the assembly of an NMD-promoting complex that eventually recruits ribonucleases to trigger rapid mRNA decay.
References

25. Belgrader, P., et al. (1993) Evidence to implicate translation by ribosomes in the mechanism by which nonsense codons reduce the nuclear level of human triosephosphate isomerase mRNA. Proc Natl Acad Sci U S A 90, 482-486
42. Preker, P., et al. (2011) PROMoter uPstream Transcripts share characteristics with mRNAs and are produced upstream of all three major types of mammalian promoters. Nucleic Acids Res
51. Roth, K.M., et al. (2009) Regulation of NAB2 mRNA 3'-end formation requires the core exosome and the Trf4p component of the TRAMP complex. RNA 15, 1045-1058
88. Huntzinger, E., *et al.* (2008) SMG6 is the catalytic endonuclease that cleaves mRNAs containing nonsense codons in metazoan. *RNA*
Transcription

Capping

Splicing

Polyadenylation

Export to cytoplasm

Translation

Degradation

Degradation

Degradation

Degradation

Degradation

Degradation

Degradation

Degradation

Degradation

Degradation
A Removal of faulty mRNP

An individual mRNP species

functional mRNP: $\frac{k_{\text{normal}}}{k_{\text{aberrant}}} >> 1$

aberrant mRNP: $\frac{k_{\text{normal}}}{k_{\text{aberrant}}} << 1$

Persistence

Degradation
B Change in relative abundance between mRNP species

Population of three individual mRNP species

Situation 1

Situation 2

Change in overall assembly, processing or degradation rates

Differentially affects $\frac{k_{\text{normal}}}{k_{\text{aberrant}}}$

- Unaffected
- Moderately affected
- Strongly affected

Persistence:

6 x ▲ 6 x □ 5 x ◆

Degradation

6 x ▲ 3 x □ 0 x ◆

Figure 2B
Selective recruitment of QC factors

A Nrd1p autoregulation

- 5'
- Nrd1p/Nab3p sites
- Nrd1p/Nab3p/Sen1p binding and premature Pol II termination
- Exosome recruitment
- RNA degradation

B Nab2p autoregulation

- 3' end trimming by Rrp6p
- [Nab2p] low
- [Nab2p] high
- A26
- Stable, polyadenylated NAB2 RNA
- Rrp6p-mediated degradation of NAB2 RNA

C Control of meiosis-specific mRNAs

- PAPAAAADRS
- Vegetative cells
- Meiotic cells
- DRS
- Exosome recruitment
- Mmi1p
- Mmi1p sequestration
- Degradation of DRS-containing mRNA
- DRS-containing mRNA stable

Figure 3
Modulation of QC activity

PHO84 gene regulation by antisense transcripts

A Young cells:
 Rrp6p activity high → asRNA degradation → PHO84 gene activity normal

 ![Diagram of PHO84 RNA regulation in young cells](image)

B Aged cells:
 Rrp6p activity low → asRNAs accumulate → PHO84 gene activity decreased

 ![Diagram of PHO84 RNA regulation in aged cells](image)
Proper termination, mRNA persists

Competing, mutually exclusive interaction

NMD, mRNA degradation

Ribosome at termination codon

UGA

5'