The EU in the United Nations General Assembly
A Comparative Perspective

Nicolas Burmester University of Hamburg
Michael Jankowski University of Hamburg

Abstract

Many scholars have analysed the voting behaviour of the European Union's member states in the United Nations General Assembly. Most studies revealed that the EU voted more cohesively over time and that the CFSP was, in this regard, a success.

In our paper, we analyse once more the voting behaviour of the EU in the UNGA but apply a comparative perspective. Hereby, we are able to shed light on some blind spots in the existing research. First, current research can tell us very little about how unique the voting cohesion of the EU is and whether the EU’s level of voting cohesion is comparatively high or low. Second, we address the lack of methodological coherence in the existing literature on voting cohesion in the UNGA. In our perspective, the major problem is the wide range of indices that is used to measure voting cohesion. To address this issue, we refine the Index of Voting Cohesion by Lijphart and make a suggestion for a more standardized research framework. Finally, we apply the NOMINATE scaling method to the UNGA and are thus not only able to show how cohesive the EU is but also how the EU positions itself ideologically within the UNGA.

We display that although one could expect that the EU has one of the highest levels of voting cohesion, the opposite is the case. I.e., the voting cohesion of other regional organizations like ASEAN, AU, AL, CARICOM and Mercosur is significantly higher. However, the EU’s major strength is not that it votes cohesively in every single vote, but that it holds its level of voting cohesion even when there is overall major disagreement within the UNGA. Finally, our analysis with NOMINATE shows that the EU is located ideologically between the U.S. and a larger bloc of mostly developing countries.

Paper prepared for the 4th European Union in International Affairs Conference, May 22nd – May 24th, Brussels, Belgium.

Comments on this paper are very welcome!

Authors contact: NicolasGBurmester@googlemail.com Michael.Jankowski@posteo.de
I. Introduction

The analysis of states’ voting behaviour in the United Nations General Assembly (UNGA) has a long standing tradition in political science. Many scholars have identified voting patterns within the UNGA and used them as an indicator for ideological conflict in the international system (Lijphart, 1963; Kim and Russett, 1996; Voeten, 2000) or used voting similarities as an indicator for foreign policy convergence of states (Jakobsson, 2009; Ferdinand, 2013a). Especially the voting cohesion of the European Union (EU) was frequently analysed over the last decades. For example, Young and Rees (2005) find evidence that the voting cohesion of the EU increased after the CFSP. Jakobsson (2009) focuses on the question whether the enlargement of the EU from 15 to 25 member states and the ‘war on terror’ affected the EU’s voting cohesion and finds only evidence for a small short-term negative effect owing to the war in Iraq (Jakobsson, 2009, p. 549). The most comprehensive study is provided by Birnberg (2009), who analysed EU’s voting behaviour based on voting cohesion indices and interviews with EU representatives at the UN. Birnberg highlights that the CFSP led to an increase in the vote co-ordination between EU member states and that, in general, EU member states are willing to co-ordinate their votes (Birnberg, 2009, p. 223). Altogether, voting cohesion is widely used as the key indicator for measuring the success of the CFSP (c.f. Bouchard and Drieskens, 2013, p. 119 for a summary of these analyses). In similar vein, Ojanen (2006, p. 13) summarizes that ‘voting cohesion among the [EU] countries has been studied as an indication of the existence of a common foreign policy, or of the lack of one’. Even the European Commission itself uses the voting cohesion of member states in the UNGA as an indicator for CFSP’s success:

Through its CFSP, the EU speaks almost always with one voice at the UN General Assembly (UNGA). From globalization and human rights, to development and disarmament, the EU aims for unanimity. And the results are clearly evidenced in EU cohesion, which has stood at around 95 % of all resolutions passed by the UNGA since the mid-1990s. [13] Of the 15 to 25 % of resolutions that are actually voted on at the UNGA each year, the EU votes unanimously on average four times out of five. Even on contentious issues like the Middle East, the EU has managed to achieve unanimity on virtually every occasion in the past decade. (European Commission, 2004, pp. 12-13)

However, most of these analyses lack a comparative perspective. This changed only recently, when scholars started to analyse the voting cohesion of other regional organizations in a comparative perspective (Rasch, 2008; Burmester and Jankowski, 2013, 2014; Jin and Hosli, 2013; Ferdinand, 2013a; Panke, 2013b). These studies revealed a highly unexpected empirical puzzle: despite the tremendous effort of vote co-ordination by the EU in the UNGA, including more than 1,000 meetings at the UN per year, other regional organizations

1 This paper is an extended version of our article “Reassessing the European Union in the United Nations General Assembly” (forthcoming in the Journal of European Public Policy).
achieve a significantly higher level of voting cohesion than the EU. This rose doubts about the above mentioned success of the CFSP that was witnessed in most of the single case studies. Ferdinand (Ferdinand, 2013a, p. 8) points out that Association of South East Asian Nations’ (ASEAN) voting cohesion is significantly higher than the EU’s and concludes that ‘it is striking that despite all the efforts to co-ordinate the positions of the EU 12, they […] fall below the degree of cohesion of the ASEAN members’. Rasch offers similar findings for African Union (AU), Arab League (AL), Caribbean Community and Common Market (CARICOM), and Economic Community of West African States (ECOWAS) (Rasch, 2008, p. 226; similarly Jin and Hosli, 2013). Rasch concludes:

Even in 2008, fifteen years after the entry into force of the TEU, national interests are the main driving forces behind the policies of the EU countries and the processes within the CFSP at the UN. In New York, the CFSP-regime is simply an instrument for intergovernmental dealings between the EU MS, aimed at pursuing the individual national positions. There is little room for a single European voice on the East River, i.e. for a truly common foreign policy. The method of intergovernmental policy-making is very similar to the processes and the disposition that characterised the EPC regime, the CFSP's predecessor. Certainly, the CFSP with its enhanced provisions has not yet arrived at the UN. Or to be more precise: the regulatory framework of the CFSP is in place but bot the spirit anticipated with this regime. (Rasch, 2008, p. 301)

Summarizing the comparative studies about the EU in the UNGA Drieskens et al. state: ‘When studying the EU at the UN, scholars often raise the question if new steps of integration lead to increased unity in voting, … However, few have taken a comparative stance when doing so, comparing the EU to other regional players. Quite interestingly, those who did find that various regional organisations outperform the EU in terms of voting coherence in the UNGA context, even if their cooperation, co-ordination and representation mechanisms are everything but comparable to the EU’ (Drieskens et al., 2013). These differences between regional organizations are once again highlighted in Figure 1, which displays the development of ROs’ voting cohesion since the 1970s.

In this paper, we argue that this puzzle is of empirical rather than theoretical nature. Hence, we do not aim to develop theoretical arguments for the finding that (on average) the EU shows a comparatively low level of voting cohesion. Instead, we analyse this puzzle in more detail by applying two different methods to UNGA voting data. First, we use the NOMINATE scaling method to uncover the dimensions of conflict which structure voting in the UNGA and show how the regional organizations position themselves in this political space. In a second step, we use voting cohesion scores and run a one inflated beta regression for each regional

2 In contrast, Panke (2013b) displays that the EU has the highest voting cohesion of all ROs. However, the definition of voting cohesion by Panke includes also absences of states. We discuss the potential problems of including absences in more detail below.
organization. Therefore, the focus of this paper is on methodological issues and the discussion of our empirical findings.

Figure 1

VOTING COHESION OF REGIONAL ORGANIZATIONS IN THE UNGA SINCE 1970

Our main argument is as follows. Single case studies of the EU in the UNGA have almost always followed a deductive approach. That is, the EU has been predefined by the researcher as a relevant actor in the UNGA and, therefore, substantial conclusions were drawn from different voting patterns of the EU. Given the huge amount of co-ordination activities of the EU in the UNGA, there can be little doubt that the EU tries to be a cohesive actor in international fora (Birnberg, 2009). Hence, the deductive approach in recent studies makes sense. However, we argue that such a deductive approach cannot be translated to other ROs that easily. This claim is based on two findings. NOMINATE is by definition an inductive method and shows that most of the other ROs form a large bloc and the ROs cannot be identified as ‘unique actors’ in the UNGA. We show that the dominant line of conflict in the UNGA is a ‘west vs. non-west’ cleavage (Voeten, 2000, 2013) and most resolutions are passed along this line. This dimension of conflict has important consequences on the interpretation of voting cohesion scores in the UNGA. We argue that voting cohesion scores in the UNGA are not a general measure of states ‘foreign policy interests’, but are specifically related to this conflict structure. Furthermore, the regression analyses confirm this finding since the EU is the only regional organization which acts as a cohesive actor even on highly contested resolutions. This is not the case with any other regional organization in our study. Consequently, we conclude that comparing the EU to other ROs is not that helpful in the context of the UNGA, simply because other ROs cannot be identified as comparable actors. Thus, using roll-call votes as a universal and direct indicator of ROs’ ‘actorness’ in international politics might lead to skewed or misleading results.
The paper structures as follows: In the next section we outline our methodological approach, with a focus on voting cohesion scores. We present a refined version of the Index of Voting Cohesion (IVC) that can be applied to measure group cohesion. Additionally, we outline the surplus of the NOMINATE method for analysing roll-call data. Afterwards, both methods are applied and the results discussed with the specific focus on the EU case.

II. Methodological Approaches to UNGA Voting

a. W-NOMINATE

W-NOMINATE is a scaling method developed by Keith T. Poole and Howard Rosenthal to analyse voting behaviour in the US Congress (Poole and Rosenthal, 1985, 1997, 2001, 2007; Carroll et al., 2013). W-NOMINATE “seeks to discover unobserved dimensions of conflict that underlie the voting behaviour” (Voeten, 2000, p. 192) in parliaments. In principle, it can be compared to a factor analysis. However, W-NOMINATE has some methodological advantages to factor analysis regarding the analysis of voting behaviour in parliaments (Voeten, 2000, pp. 191-192). W-NOMINATE produces spatial maps of voting in which legislators, i.e. in our case states, are plotted on political dimensions, which are derived from states’ voting behaviour. The position of a state is called ideal point and reflects its ideological position in the Assembly.

Since its development in the 1980s, W-NOMINATE has become the standard ideal point estimation procedure for legislative voting and has been applied successfully to a wide range of different parliaments all over the world (amongst other the US Congress (Poole and Rosenthal, 1997), the European Parliament (Hix, 2001; Hix et al., 2006, 2007, 2009), and the Korean National Assembly (Hix and Jun, 2009)). One key result of these analyses is that parliamentary voting behaviour is commonly structured by very few dimensions, most often not more than one or two. The number of relevant dimensions can be derived from the APRE value which serves as a goodness of fit criteria. It is based on the fact that W-NOMINATE predicts the voting decision of each legislator for a specific vote. If this prediction is correct, the vote has been classified correctly and vice versa. The APRE value indicates whether and by how much this classification procedure produces a better estimation than the trivial classification assumption, i.e. all legislators vote the same way (Poole and Rosenthal, 2007, p. 36). Since an extra dimension is likely to increase the number of correct classifications, the APRE value for the second dimension is higher than the APRE1. However, since APRE2 includes the percentage of APRE1, only the difference between APRE2 and APRE1 can tell us how much the explanatory power of our model increases due to a second dimension.
As with every other scaling method, W-NOMINATE requires the researcher to interpret the revealed dimensions. In ‘normal’ national parliaments and also the European Parliament, the first dimension is commonly referred to as ‘left-right’ or ‘government-opposition’. However, with regard to the UNGA and its comparatively quite different structure, this interpretation of the dimensions cannot be transferred that easily. However, Voeten (2000, 2013) showed that potential dimensions in the UNGA are ‘East vs. West’, ‘North vs. South’ or ‘rest vs. West’. The latter occurred more or less after the end of the Cold War, while the other two dimensions played a crucial role before the 1990s.

NOMINATE, thus, can reveal important information about the structure of conflict in the UNGA. Not only the interpretation of the dimensions is of interest to us, but also the proximity of regional organizations’ member states as well as the distance between different voting blocs. In short, W-NOMINATE allows us to get a first indication which ROs can be seen as ‘unique actors’ within the UNGA and, of course, which dimensions of conflict structure UNGA voting.

b. Indices of Voting Cohesion

In this section, we compare and discuss the two most prominent and widely used indices of voting cohesion. First, the Agreement Index by Hix et al. (2005, 2007) and, second, the Index of Voting Cohesion developed by Lijphart (1963; renamed by Hurwitz, 1975). Generally, both indices are applied for analysing different constellations of voting cohesion. The Agreement Index is used for calculating the cohesion of a group of states (e.g. EU) while the Index of Voting Cohesion is mainly employed for analysing dyads (e.g. the U.S. and Russia) and in some rare cases groups. We consider this coexistence as somewhat problematic since both indices are based on different conceptions of how cohesion is measured. Therefore, they produce (slightly) different results. Most importantly, the two indices differ in their approach of how to weight abstentions. Besides the discussion of the differences, we show how the Index of Voting Cohesion, which is considered as an elegant but too complex way of measuring voting cohesion (c.f. Hosli et al., 2010, p. 17), can be formalized in a way that it is easily applicable to a group of states.

Agreement Index

The Agreement Index was developed by Hix et al. (2005) to measure voting cohesion in the European Parliament. In contrast to other parliaments, like e.g. the U.S. Congress, legislators can abstain in the European Parliament. Consequently, the Agreement Index includes abstentions in its computation. Since

3 We focus on indices which are designed to measure voting cohesion in parliaments with three voting options (‘yes’, ‘no’ and ‘abstention’). In parliaments where only ‘yes’ and ‘no’ votes can be casted, the Rice Index (Rice 1928) is probably the most widely used index to measure voting cohesion.
states in the UNGA can also abstain instead of just casting a ‘yes’ or ‘no’, the index is frequently used in analyses of the UNGA (e.g. Hosli et al., 2010; Ferdinand, 2013a).

The Agreement Index is defined as:

\[
\text{Agreement Index} = \frac{\max(Y, N, A) - 0.5 \times [Y + N + A - \max(Y, N, A)]}{Y + N + A} \tag{1}
\]

The \(\max(Y,N,A)\)-term is the most important part of the index. It equals the count of the voting option (‘yes’, ‘no’ or ‘abstain’) with the highest number of votes. In other words, it is the mode of the three voting options.

To see how the Agreement Index measures cohesion, it is reasonable to replace the absolute \(\max(Y,N,A)\)- and the \(Y\)-, \(N\)-, \(A\)-terms with their percentage values, i.e. dividing these terms by \(Y+N+A\) and then multiplying them with 100. Of course, \(Y+N+A\) equals 100 per cent and the \(\max(Y, N, A)\)-term is variable. With this in mind, we can reformulate the Agreement Index as follows:

\[
\text{Agreement Index} = \frac{\max(Y, N, A) \% - 0.5 \times (100\% - \max(Y, N, A) \%)}{100\%} = 0.015 \times \max(Y, N, A) \% - 0.5 \tag{2}
\]

This shows more clearly that the Agreement Index is basically a rescaling of the \(\max(Y,N,A)\)%-term to a value between zero and one. The Agreement Index does therefore not directly take into account how the states vote that differ from the majority position. This is one of the major differences compared to the Index of Voting Cohesion (see below) and, as we believe, also a major weakness of the Agreement Index as there is a difference between abstentions and the support or opposition of a resolution.

We suggest that the Agreement Index is well suited to measure how contested a vote was overall in a legislative body with three voting options, because the Agreement Index measures how large the majority size in the UNGA is. Simply put, the smaller the majority size, the more contested a resolution. However, when analysing voting cohesion of regional organizations, we think that it is too simple to merely focus on the size of the majority position. Along the line of Lijphart (1963), we suggest that abstentions can be interpreted as a weaker form of disapproval and should therefore be seen as a middle position between ‘yes’ and ‘no’. Hence, we use the Agreement Index as an independent variable in our regression analysis which measures the level of disagreement about a resolution in the UNGA and compute our dependent variable ‘voting cohesion’ according to the Index of Voting Cohesion as described in the following.

Index of Voting Cohesion

The Index of Voting Cohesion was developed by Lijphart (1963) and can be regarded as the standard measure of voting cohesion for a dyad of states. It is defined as:
Where ‘a’ is the number of times two states vote the same (identical vote), ‘b’ is the number of times one state positions itself clearly with ‘yes’ or ‘no’ while the other one abstains (solidarity vote) and ‘t’ is the total number of times both states casted their votes on the same ballot. Conceptualized like this, the index is only applicable to dyads and it is therefore quite complicated to compute ‘group cohesion’. However, scholars have done so by calculating the IVC for every possible dyad in a group of states and then computing the average of all these values (Jakobsson, 2009). Yet, these studies are the exception and Hosli et al. note: ‘A drawback of the IVC approach, in spite of its elegance and parsimony, is that it is somewhat tedious to calculate for a large UN membership’ (Hosli et al., 2010, p. 17; see also Ferdinand, 2013a, p. 9). In contrast to this view, we modify the above given IVC so that it can be applied to groups more conveniently. The original IVC by Lijphart can be re-written as the following:

\[
\text{IVC} = \frac{\text{identical votes} + 0.5 \times \text{solidarity votes}}{\text{identical + solidarity + divided votes}}
\]

(4)

Note that we replace ‘t’ with the sum of all voting constellation that occur between two states (divided vote = one state votes ‘yes’ while the other one votes ‘no’). So, more generally, the IVC can be described as dividing the number of all identical votes and half of the solidarity votes by the sum of all occurring voting constellations. Hence, for making the IVC applicable to a group of states, the question arises how many identical, solidarity and divided votes occur in a given group of states. The complete derivation for the formula can be given on request. However, the final formula we use is:

\[
\text{IVC} = \frac{2 \times [(n_y - 1) \times n_y + (n_n - 1) \times n_n + (n_a - 1) \times n_a + n_a \times (n_y + n_n)] - \frac{N^2}{2} + N}{N^2}
\]

(5)

Where \(n_y\), \(n_n\) and \(n_a\) are the number of ‘yes’-, ‘no’-, and ‘abstain’-votes casted by a group and \(N\) is the sum of these voting options. Although it seems a bit more complex than the Agreement Index, the information needed for computing remains the same: only the count of ‘yes’-votes, ‘no’-votes and ‘abstentions’ of a regional organization has to be known.

It should be noted that this formula can be seen as a more general form of the original IVC by Lijphart, as it is still applicable to dyads as well as to groups. Furthermore, the ‘logic’ of the IVC remains untouched. When one half of a group votes with ‘no’ and the other half votes with ‘yes’, the index becomes zero (divided vote) but when one half of the members abstains and the other half votes cohesively with ‘yes’ or ‘no’, the index is 0.5 (solidarity vote).
c. Treatment of Absences

As stated above, we exclude absences from our analysis. This decision needs a brief substantiation since scholars have dealt differently with this issue. There are four possible ways to code absences: (1) absences can be treated equivalent to abstentions (e.g. Luif, 2003), (2) equivalent to a ‘no’-vote (at least in some cases Hurwitz, 1975), (3) as a fourth, distinct voting position (Panke, 2013b), or (4) as missing values (e.g. Lijphart, 1963; Strömvik, 1998; Hosli et al., 2010). In our study, we decided to treat absences as missing values for two major reasons: first, although there might be some resolutions in which states’ representatives are present at the UNGA but do not press a button because of political reasons, we agree with Voeten (2013, pp. 55) that the majority of absences is caused by domestic or organizational issues and are not related to the specific content of a resolution. In the General Assembly, an absence in one vote is followed by another absence in the subsequent vote in 68 per cent of all cases, which makes a political reason for the particular absence highly unlikely. Second, including absences might also bias a comparison between the regional organizations. As stated above, Voeten argues that absences are mainly caused by domestic issues which are mostly related to aspects of economic development. This position is backed by Panke (2013a), who also shows that participation in the UNGA is connected to economic factors. Therefore, only regional organizations with less developed members states will be (negatively) affected by absences, while e.g. the EU will not.

d. Regression Models for the Analysis of Voting Cohesion

Another unaccounted aspect in the analyses of voting cohesion is, which regression model should be used to analyse cohesion scores. Usually, studies choose a simple OLS regression model. This decision seems feasible as cohesion scores are continuous. However, the distribution of cohesion scores and their truncation between zero and one are two important aspects that violate basic assumptions of the OLS regression model (Papke and Wooldridge, 1996; Moeller, 2013).

First, OLS regressions with cohesion scores as the dependent variable may predict values that are less than zero or greater than one. These values make no sense, as the dependent variable has a range between zero and one, but are likely to occur when using OLS regressions. Second, another basic assumption is often violated when using OLS for cohesion scores: the normal distribution of errors, which is unlikely if our dependent variable is a proportion. Third, if we use OLS regression to analyse voting cohesion scores, heteroscedasticity is a likely occurrence. All in all, the violation of these three assumptions potentially leads to wrong estimates and standard errors and, thus, can affect the interpretation of the reported effects as well as significance levels. Simply put, we are running at risk of overlooking specific relationships between the variables, due to the misfit of the OLS model.
Therefore, we use a one inflated beta regression (oib) model for analysing voting cohesion in the UNGA. This model consists of two separate regression models. One model is calculated for the probability that the outcome is one (i.e. perfect cohesion), and a second for cases in which the outcome lies between zero and one. For estimating the probability of an outcome of one, the model uses logistic regression, while the proportion between one and zero is estimated with a beta regression (Ferrari and Cribari-Neto, 2004). The beta distribution is quite flexible and allows us to work with skewed data as it is the case with voting cohesion scores in the UNGA.

The oib regression model is not only more accurate in methodological terms than an OLS, it also allows for a better interpretation of the observed effects. With other regression models\(^4\), we might observe an increase in voting cohesion, but we cannot easily analyse whether this increase is due to a higher probability of perfect voting cohesion (i.e. all members cast the same vote) or due to a decrease in the level of ‘incohesiveness’ (i.e. is a large majority of states votes the same way, but not all). By applying oib, we are able to account for these differences and, therefore, add significant value to the analysis of voting cohesion in the UNGA.

III. Case selection

In spite of the advantages of the UNGA for our comparative approach, a drawback is that we are still missing a clear theoretical concept which would allow us to differentiate between different types of regional organizations (Hulse, 2014, p. 1). Focusing specifically on the case of regional organizations performance in the UNGA, Drieskens et al. (2013, p. 17) state that “the literature on comparative regionalism may be flourishing and promising (Lombaerde, 2011), but there is no measurement tool to assess the presence and performance of regional organisations (like the EU, African Union and Arab League) in multilateral settings\(^5\).” This lack of a clear theoretical concept has important consequences for the approach chosen in this paper. First, case selection is quite difficult, since we still know very little about the similarities and differences of regional organizations. Simply put, we are missing clear selection criteria for our analysis. Today, regional organizations exist in dozens and we can barely analyse a small selection of them. The second problem is that we can hardly derive hypotheses from recent debates on regional organizations’ performance at the UNGA other than that an increase in cooperation should lead to an increase of voting similarities between member states. With regard to the European Union, “scholars often raise the question if new steps of integration lead to increased unity in voting, using the former as their point of reference” (Drieskens et al., 2013, p. 17). Of course, such a hypothesis can be transferred to every other regional organization. Yet, it seems problematic to

\(^4\) This includes all other regression models as for example a ‘fractional logit’ model (Papke and Wooldridge, 1996) and normal beta regression which can also be considered for analyzing proportional data.
argue which regional organization should perform better than others in this regard, as we have no clear way to assess which regional organization is more integrated, especially with regard to ‘political cooperation’.

We deal with these problems in the following way. Our case selection is mainly based on geographical as well as on organization specific aspects. We include six regional organizations in the analysis: African Union (AU), Arab League (AL), Association of Southeast Asian Nations (ASEAN), Caribbean Community and Common Market (CARICOM), European Union (EU), and Mercado Común del Sur (Mercosur). Each regional organization in our analysis covers a different part of the world. Only in North Africa, we face some problems of overlapping regionalism since some states are members of the AU as well as the Arab League. Further, our selected regional organizations show some degree of difference regarding their aims. For example, Mercosur is primarily an economic oriented regional organization, while the Arab League has a strong focus on regional security issues. CARICOM, however, has committed itself – among other goals – to a closer coordination of foreign policy positions (CARICOM, 1973, Art. 4; CARICOM, 2001, Art. 6; Lennert, 1991, pp. 39-40; Müllerleile, 1993, pp. 105-106). ASEAN’s role in the UNGA has already received attention and it was highlighted that it is a case which needs further analyses (Ferdinand, 2013a, 2013b, 2013c; Burmester and Jankowski, 2013). However, one can argue that ASEAN’s main purpose is to foster cooperation within Southeast Asia and to reassure member states’ sovereignty (Cockerham, 2010; Narine, 2008, 2012), especially as a reaction to China’s rise (Goh, 2008a, 2008b; Thomas, 2012), and not to work as coordination mechanism on the international level. Finally, the African continent is covered by the inclusion of the African Union, an underachieving regional organization with a wide range of ambitions, especially in the field of security. The EU, however, aims to deepen the integration of member states in the economic and political sphere via a sophisticated institutional setup. Most importantly for this study, the Common Foreign and Security Policy (CFSP) urges member states to coordinate their foreign policies and to achieve a cohesive stance on international issues.

TABLE 1

<table>
<thead>
<tr>
<th>REGIONAL ORGANIZATIONS IN THE ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
</tr>
<tr>
<td>----</td>
</tr>
<tr>
<td>African Union</td>
</tr>
<tr>
<td>Arab League</td>
</tr>
<tr>
<td>ASEAN</td>
</tr>
<tr>
<td>CARICOM</td>
</tr>
<tr>
<td>EU</td>
</tr>
<tr>
<td>Mercosur</td>
</tr>
</tbody>
</table>

IV. Analysing the UNGA with W-NOMINATE

As a first empirical step, we analyse the voting behaviour in the UNGA with W-NOMINATE. According to the standard model of W-NOMINATE, votes with a minority size smaller than 2.5 have been excluded from the analysis. In line with the research design by Voeten (2000), abstentions have been coded as ‘no’. This is due to the fact that W-NOMINATE analyses binary data, i.e. a state is in favour of a resolution or against it. However, since the UNGA is usually dominated by large majorities, abstaining and voting ‘no’ are two ways of expressing the unwillingness of a state to follow the majority position. Further, states that became member of a regional organization during one of the observed periods have been included two times in the model: once for the period in which they were not member of the regional organization and another time for the period when they were a member of the regional organization. Therefore, our model includes more than 192 states.

The results of our W-NOMINATE analysis are presented in Table 2 as well as Figure 2 and Figure 3. Table 2 shows that the UNGA is essentially structured by one conflict dimension after 1990. More than 90 per cent of every single vote casted (‘yes’ or ‘no’) can be classified correctly by the placement of states on one single dimension. A second dimension adds only limited explanatory power to the model in the period 1990-1999 and became slightly more relevant in the period 2000-2011. This is represented by the APRE1 and APRE2 values which demonstrate that a unidimensional model of voting improves the explanatory value to over 60 per cent compared to the trivial assumption that all legislators vote the same way.

<table>
<thead>
<tr>
<th>Period of observation</th>
<th># RCV</th>
<th>Correct classifications</th>
<th>APRE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dim. 1</td>
<td>Dim. 2</td>
</tr>
<tr>
<td>1990-1999</td>
<td>579</td>
<td>92.3%</td>
<td>93.4%</td>
</tr>
<tr>
<td>2000-2011</td>
<td>706</td>
<td>92.8%</td>
<td>94.5%</td>
</tr>
</tbody>
</table>

Annotation: For our computations, we used the „wnominate“-package for R (Poole et al. 2011). RCV = roll-call vote, APRE = Aggregate Proportional Reduction in Error.

The spatial maps (Figure 2 and Figure 3) provide additional information to analyse and label the dimension(s) of conflict in the Assembly. During the Cold War (spatial maps not shown in the paper, but see Voeten, 2000 for a detailed analysis), UNGA member states aligned themselves alongside a continuum of which the US and the Soviet Union constituted the endpoints. However, a second dimension was also relevant in some periods, which divided the global South from the global North. With the end of the Cold War, this picture slightly changed: now, the first dimension represents a conflict between the ‘West and the rest’ (Voeten, 2000, 2013).

5 In June 2011, South Sudan joined as the 193rd member state. Therefore, South Sudan is not included in our analysis.
Yet, as we can also see from the spatial maps and the estimated dimensions, a clear shift to multipolarity cannot be witnessed in the UNGA. The so called ‘non-Western’ states form a rather large bloc. Yet within this bloc, we cannot clearly identify regional organizations as ‘unique actors’. This holds especially true for the years 1990-1999 and to some extent for the period from 2000 to 2011. In both periods, the EU is the only clearly identifiable multistate actor. The EU member states are plotted on the right hand side, with France and the UK being the closest to the US, which is located on the right border of the spatial map. The other regional organizations are mostly part of the large group of ‘non-Western’ states. In general, some trends can be identified in this pattern. For example, CARICOM is placed at the top of the bloc, while ASEAN and Arab League are more at the bottom. Meanwhile, the African Union is scattered over the second dimension. One could argue that regional organizations’ member states are quite close within this bloc, this holds especially true for the Arab League in the period from 2000-2011, but they are hardly identifiable as ‘unique actors’ like the EU.
V. Results from the Analysis of Voting Cohesion

In a second step, we analyse regional organizations’ voting cohesion by applying oib regression. We include all roll-call votes between 1990 and 2009, where more than three member states of the regional organization in question took part. According to the computation of the IVC, ‘yes’, ‘no’ and ‘abstention’ are incorporated in the analysis, absences are treated as missing values. The voting cohesion of the respective regional organization is used as the dependent variable in the model.

The regression model contains the following independent variables (descriptive statistics are reported in the appendix). First, we include time in a metric variable. Instead of using years as the time variable, we incorporate the session number with the 45th session (1990/91) as the basis. Second, each resolution has a specific topic. The topics are coded as dummy variable with ‘other’ as the reference category. The other six topics are: Middle East conflict, nuclear weapons, arms control, human rights, colonialism, and (economic) development. We based the coding on the database of Strezhnev and Voeten (2013), yet removed existing double-coding and corrected for cases in which the existing coding seemed to be inappropriate. Third, to control for the structure of UNGA voting, we included the voting decision of the US as a dummy variable.
(US votes ‘no’ with ‘yes’/‘abstention’ as the reference category). The analysis with W-NOMINATE revealed that the US voting decision consistently define the endpoint of the most important first dimension of conflict in the UNGA. By including the US position, we can therefore incorporate the findings of our W-NOMINATE analysis. Fourth, we insert another dummy variable that signifies whether the vote was labelled ‘important’ by the US State Department. Again, we hope to attain some form of control for the dominant cleavage. Fifth, for each regional organization, we count the number of member states that take part in a vote and included this value as a metric variable. With this variable, we are able to account for the effect of new member states on the voting behaviour cohesion of the regional organization. However, besides the EU and ASEAN, most regional organizations did not grow significantly since the 1990s. Yet, we report some variance due to absences, suspensions, etc. Sixth, we control for the closeness of a vote. For this, we use the Agreement Index to compute the overall majority share of in the UNGA. Then, we deduct these values from 1, with a value of 0 denoting a unanimous vote and 1 a vote where all three voting positions received one third of the votes. For this variable, we include a linear and a squared term in the analysis.

In the interpretation of Table 2, we will not focus on all effects, but rather highlight specific findings which are of interest for the comparison of the EU to other ROs.

First of all, it can be highlighted that the EU shows an increase in perfect voting cohesion over the last 20 UN Sessions, while the level of incohesiveness did not change in this period. Compared to other ROs, only CARICOM and Mercosur show an increase in voting cohesion as well, while Arab League, ASEAN, and African Union show a (small) decrease over the last 20 Sessions. Some regional organizations are not becoming more cohesive over time, but less.
Table 3

Results of One Inflated Beta Regression (DV: Voting Cohesion of Regional Organizations)

<table>
<thead>
<tr>
<th>Arab League</th>
<th>ASEAN</th>
<th>African Union</th>
<th>CARICOM</th>
<th>EU</th>
<th>Mercosur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion</td>
<td>Logit</td>
<td>Proportion</td>
<td>Logit</td>
<td>Proportion</td>
<td>Logit</td>
</tr>
<tr>
<td>UN Session</td>
<td>-0.0781***</td>
<td>-0.0960***</td>
<td>-0.0108</td>
<td>-0.0599*</td>
<td>0.00830</td>
</tr>
<tr>
<td>(0.012)</td>
<td>(0.023)</td>
<td>(0.010)</td>
<td>(0.027)</td>
<td>(0.005)</td>
<td>(0.011)</td>
</tr>
<tr>
<td>Middle East</td>
<td>-0.272</td>
<td>2.011***</td>
<td>0.469***</td>
<td>0.874**</td>
<td>0.235*</td>
</tr>
<tr>
<td>(0.232)</td>
<td>(0.429)</td>
<td>(0.132)</td>
<td>(0.288)</td>
<td>(0.096)</td>
<td>(0.199)</td>
</tr>
<tr>
<td>Nuclear Weapons</td>
<td>-0.0470</td>
<td>-0.352</td>
<td>0.447***</td>
<td>-0.167</td>
<td>0.387***</td>
</tr>
<tr>
<td>(0.126)</td>
<td>(0.281)</td>
<td>(0.113)</td>
<td>(0.305)</td>
<td>(0.117)</td>
<td>(0.226)</td>
</tr>
<tr>
<td>Arms Control</td>
<td>-0.329*</td>
<td>-0.595*</td>
<td>0.420***</td>
<td>-0.845**</td>
<td>0.301*</td>
</tr>
<tr>
<td>(0.143)</td>
<td>(0.277)</td>
<td>(0.106)</td>
<td>(0.288)</td>
<td>(0.111)</td>
<td>(0.231)</td>
</tr>
<tr>
<td>Human Rights</td>
<td>-0.340*</td>
<td>-0.381</td>
<td>-0.150</td>
<td>-0.297</td>
<td>-0.305*</td>
</tr>
<tr>
<td>(0.147)</td>
<td>(0.300)</td>
<td>(0.125)</td>
<td>(0.304)</td>
<td>(0.110)</td>
<td>(0.232)</td>
</tr>
<tr>
<td>Colonialism</td>
<td>0.111</td>
<td>0.835</td>
<td>-0.187</td>
<td>3.157**</td>
<td>0.375*</td>
</tr>
<tr>
<td>(0.160)</td>
<td>(0.450)</td>
<td>(0.129)</td>
<td>(0.974)</td>
<td>(0.172)</td>
<td>(0.339)</td>
</tr>
<tr>
<td>Ec. Development</td>
<td>0.467*</td>
<td>0.216</td>
<td>0.0122</td>
<td>1.215**</td>
<td>0.341*</td>
</tr>
<tr>
<td>(0.181)</td>
<td>(0.385)</td>
<td>(0.195)</td>
<td>(0.453)</td>
<td>(0.168)</td>
<td>(0.357)</td>
</tr>
<tr>
<td>USA = ‘No’</td>
<td>0.436***</td>
<td>1.861***</td>
<td>0.173*</td>
<td>1.370***</td>
<td>0.427***</td>
</tr>
<tr>
<td>(0.111)</td>
<td>(0.198)</td>
<td>(0.080)</td>
<td>(0.211)</td>
<td>(0.078)</td>
<td>(0.148)</td>
</tr>
<tr>
<td>Important</td>
<td>-0.496***</td>
<td>-1.551***</td>
<td>-0.0282</td>
<td>-1.579***</td>
<td>-0.512***</td>
</tr>
<tr>
<td>(0.101)</td>
<td>(0.214)</td>
<td>(0.072)</td>
<td>(0.219)</td>
<td>(0.074)</td>
<td>(0.183)</td>
</tr>
<tr>
<td>Size RO</td>
<td>0.160***</td>
<td>0.250***</td>
<td>0.0774*</td>
<td>0.131</td>
<td>0.0261***</td>
</tr>
<tr>
<td>(0.018)</td>
<td>(0.049)</td>
<td>(0.031)</td>
<td>(0.094)</td>
<td>(0.006)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Closeness</td>
<td>-2.391***</td>
<td>-2.988**</td>
<td>0.827</td>
<td>-4.656***</td>
<td>-0.574</td>
</tr>
<tr>
<td>(0.640)</td>
<td>-1.115</td>
<td>(0.512)</td>
<td>-1.205</td>
<td>(0.415)</td>
<td>(0.936)</td>
</tr>
<tr>
<td>Closeness Sq.</td>
<td>2.295*</td>
<td>0.645</td>
<td>-1.292*</td>
<td>0.227</td>
<td>-0.795</td>
</tr>
<tr>
<td>(0.724)</td>
<td>-1.519</td>
<td>(0.508)</td>
<td>-1.624</td>
<td>(0.505)</td>
<td>-1.277</td>
</tr>
<tr>
<td>Intercept</td>
<td>2.766***</td>
<td>1.789*</td>
<td>0.372</td>
<td>4.646***</td>
<td>0.185</td>
</tr>
<tr>
<td>(0.540)</td>
<td>(0.785)</td>
<td>(0.412)</td>
<td>(0.932)</td>
<td>(0.365)</td>
<td>(0.768)</td>
</tr>
</tbody>
</table>

Note: Standard errors are in parentheses. Proportion model displays regression coefficients for cases with voting cohesion < 1. Logit model displays regression coefficients from a logistic regression model for cases with voting cohesion = 1. Cohesion scores were only computed when more than three RO member states casted a vote. N = Number of observations, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion, LL = Log-Likelihood, PRE = Proportional Reduction of Error. Significance levels: * = p < 0.05, ** = p < 0.01, *** = p < 0.001.
Second, it seems to be important to understand when the EU votes less or more cohesively compared to other regional organizations. For this purpose, we calculated the average marginal effect (AME) of the six topics we controlled for in the analysis. By this, we can clearly see how the EU performs on many issues compared to other regional organizations. For example, on resolutions regarding arms control, most regional organizations show a predicted cohesion level of 0.9. On human rights resolutions, the EU has one of the highest predicted voting cohesions. The same holds true for resolutions on the Middle East, on which the EU, Arab League, and ASEAN are almost always perfectly cohesive actors and outperform Mercosur, African Union, and CARICOM by far. Actually, there are only two topics on which the EU shows a high degree of disagreement: these are resolutions on nuclear weapons and on questions of decolonialisation. In decolonialisation ballots, the EU has only a predicted cohesion score of 0.7, while all other cases show a much higher level. This implies that the comparatively ‘low’ average voting cohesion score of the EU is only caused by certain issues on which the EU is less able to find a common position.

Figure 4

Average Marginal Effects on Voting Cohesion by Issues in the UNGA

![Graph showing average marginal effects on voting cohesion by issues in the UNGA](image)

Further and in a similar way, we compare the effect of the US voting behaviour on the EU and other ROs. We can see that the EU has the highest predicted voting cohesion when the US vote with ‘Yes’ or ‘Abstain’, while it has, together with Mercosur, the lowest in case of a ‘No’-vote by the US. An US rejection of a resolution correlates with European struggles to find a common position. As this is no rare occasion – the US

6 We do not display the AME for the reference category (‘other issues’), since this category cannot be interpreted substantively.

7 The values in this section are the predicted voting cohesion scores for the overall regression model.
vote ‘No’ on almost every second resolution – the US stance seems to have an important impact on EU’s capability to act as cohesively.

Figure 5

Average Marginal Effects on Voting Cohesion by US Votes in the UNGA

Finally, we display the results of the closeness variables. Hypothetically, we assume a negative relationship between the closeness of a resolution and the voting cohesion of a regional organization in the UNGA. This is so, because on almost unanimous resolutions, all regional organizations must have a high level of voting cohesion. The more contested a resolution is, the higher the likelihood that a regional organization votes no longer cohesively. This should especially hold true for the probability of a RO to vote with perfect voting cohesion, since the probability that only one member deviates from the majority position is getting a lot higher in contested ballots.

As we can see in Figure 6, this negative relationship can be witnessed for almost every regional organization in the UNGA, with the exception of the European Union. The figure clearly shows that the EU has a comparatively low probability to vote as a unitary actor on rather unanimous resolutions. In contrast, the probability to speak with one voice increases the more contested a resolution is and reaches almost the perfect score of one if the UNGA is evenly split alongside the three voting options. This is a singular quality of the EU as the opposite is the case for most other ROs. Among the shown ROs, only the Arab League shows a relatively small decrease in the probability to vote with perfect cohesion. All other ROs show a very steep decrease in the probability and it becomes almost zero in very close votes.

8 We also controlled this, among others, for ECOWAS, SADC, the Andean Community, and the Pacific Islands Forum.
9 Further, this holds also true for the ‘overall’ model and not only for the probability to vote with perfect cohesion. That means, also the level of incohesiveness is lower for the EU on contested votes, while it increases for other ROs.
The sharp decrease in the probability should not be surprising for the African Union. It is obvious that the probability of a large RO to not vote with perfect cohesion on contested resolutions is much smaller compared to ROs with less member states. However, since the EU is the second largest RO in our analysis, this finding is even more impressive as it displays that the EU, although consisting of more than 20 members, is more successful to find a common position in the UNGA than significantly smaller ROs like Mercosur.

Figure 6

Predicted probability of perfect voting cohesion based on the closeness of a resolution in the UNGA

This finding should be connected to our analysis of UNGA voting using W-NOMINATE. As we argued based on NOMINATE a ‘normal resolution’ in the UNGA is accepted by a large bloc consisting of many regional organizations. Hence, this bloc votes with an overall large voting cohesion in uncontested votes. But as it becomes visible in Figure 6, regional organizations do not seem to be important actors when this overall pattern of UNGA voting falls apart. Only the EU remains a visible and important actor. Therefore, we argue that regional organizations other than the EU cannot be identified as ‘unique actors’ by their voting behaviour in the UNGA.

VI. Conclusion

In this paper, we were able to show that the existing comparative research on regional organizations’ voting patterns in the UNGA is only able to reveal one half of the bigger picture. When we compare EU’s average voting cohesion to the one of other ROs, an empirical puzzle occurs: why is the EU unable to reach a comparable level of voting cohesion, although it is unarguably the most integrated regional organization
worldwide? How is it possible that dysfunctional or unsuccessful ROs outperform the highly praised CFSP of the EU? This puzzle can be solved by using the methodological approach presented in the paper. First, by using NOMINATE, we are able to show that the EU takes a unique position in the UNGA while all other analysed ROs are part of a quite large cluster of states. The EU is caught in the middle between the Global South and the US in the UNGA. Secondly and most importantly, the one inflated beta regressions reveal that the EU has another very unique trait: it is the only organization that preserves (and gains) actorness in contested votes. Only the EU is able to coordinate their votes and speak with one voice when push comes to shove. Hence, although we started our paper based on the observation that comparative analyses of the EU are surprisingly rare, we conclude from our own analysis that such a comparison might not be that helpful as initially expected after all. Finally, our paper reflects on some methodological issues in the field of UNGA vote analysis. We are able to shed some light on the underlying logic of cohesion scores and propose possible application scenarios.

Our empirical findings provide some implications for the theoretical debates on regional organizations and regional integration. As we were able to show, speaking with one voice is not a value in itself. If there is harmony between RO’s member states (or even an immensely large majority of states) on an issue, unity is not a merit but a random occurrence. This is in line with an argument made by Stavridis and Pruett in 1996: “If at the time of European Political Cooperation, countries like Chile, Chad, Czechoslovakia, and China (and another 150 states) could agree, why was it so impressive that the EC states could agree as well?” (Stavridis and Pruett, 1996, p. 4). However, unity is a value if the level of conflict among the member states and in the international society rises. A regional organization that is able to speak and act cohesively in disputed issues actually shows actorness. Therefore, the theoretical and (qualitative) empirical research on regional organizations’ effectiveness and actorness should focus more on these instances of global dispute and conflict.
References

Ferdinand, P. (2013c) *ASEAN at the UN* (Cardiff).

Appendix

Descriptive Statistics

<table>
<thead>
<tr>
<th>Topics</th>
<th>N</th>
<th>%</th>
<th>Cum. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>211</td>
<td>14.52</td>
<td>14.52</td>
</tr>
<tr>
<td>Middle East conflict</td>
<td>408</td>
<td>28.08</td>
<td>42.6</td>
</tr>
<tr>
<td>Nuclear weapons</td>
<td>240</td>
<td>16.52</td>
<td>59.12</td>
</tr>
<tr>
<td>Arms control</td>
<td>166</td>
<td>11.42</td>
<td>70.54</td>
</tr>
<tr>
<td>Human rights</td>
<td>225</td>
<td>15.49</td>
<td>86.03</td>
</tr>
<tr>
<td>Colonialism</td>
<td>125</td>
<td>8.6</td>
<td>94.63</td>
</tr>
<tr>
<td>Econ. development</td>
<td>78</td>
<td>5.37</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Important vote US</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>not important</td>
<td>1,204</td>
<td>82.86</td>
<td>82.86</td>
</tr>
<tr>
<td>important</td>
<td>249</td>
<td>17.14</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>US voting behaviour</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>USA: Yes or Abstain</td>
<td>515</td>
<td>35.64</td>
<td>35.64</td>
</tr>
<tr>
<td>USA: No</td>
<td>930</td>
<td>64.36</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closeness</td>
<td>1453</td>
<td>0.262</td>
<td>0</td>
<td>0.95</td>
</tr>
</tbody>
</table>
FIGURE 7
HISTOGRAM AND KERNEL DENSITY PLOT OF CLOSENESS VARIABLE