Bisoxazoline-Lewis Acid-Catalyzed Direct-Electron Demand oxo-Hetero-Diels−Alder Reactions of N-Oxy-pyridine Aldehyde and Ketone Derivatives

Aitor Landa, Bo Richter, Rasmus Lyng Johansen, Anna Minkkil, and Karl Anker Jrgensen

J. Org. Chem., **2007**, *72* (1), 240-245 • DOI: 10.1021/jo062012u

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 8 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Bisoxazoline-Lewis Acid-Catalyzed Direct-Electron Demand oxo-Hetero-Diels–Alder Reactions of N-Oxy-pyridine Aldehyde and Ketone Derivatives

Aitor Landa,† Bo Richter,‡ Rasmus Lyng Johansen,† Anna Minkkilä,†,‡ and Karl Anker Jørgensen*†

Danish National Research Foundation: Center for Catalysis, Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark, and Department of Pharmaceutical Chemistry, University of Kuopio, P.O. Box 1627, FI-70211 Kuopio, Finland

kaj@chem.au.dk

Received September 29, 2006

A general catalytic oxo-hetero-Diels–Alder reaction for pro-chiral aldehyde and ketone N-oxy-pyridines is presented. The catalytic and asymmetric oxo-hetero-Diels–Alder reaction of electron-rich dienes with N-oxy-pyridine-2-carbaldehyde and ketone derivatives, catalyzed by chiral copper(II)–bisoxazoline complexes, gives optically active six-membered oxygen heterocycles in moderate to good yields and with excellent enantioselectivities.

Introduction

Despite the fact that we are in the “Golden Age” of organocatalysis,1 chiral metal complexes still continue to be the focus of intense activity in asymmetric catalysis.2 Electrophilic activation of carbonyl compounds by metal-centered chiral Lewis acids is an efficient method for the enantioselective catalysis of nucleophile—electrophile reactions.

The Diels–Alder reaction (DA), the concerted [2π4, + 2π2,] cycloaddition of a conjugate diene and a dienophile to form unsaturated six-membered rings, is a cornerstone in organic chemistry and has been a widely used synthetic procedure for the construction of stereochemically controlled compounds.3 An important variant of the DA reaction, the oxo-hetero-Diels–Alder reaction (oxo-HDA), was developed by Danishefsky et al. They reported the Lewis-acid-catalyzed reaction of an activated diene, 1-methoxy-3-(trimethylsiloxy)-1,3-butadiene (Danishefsky’s diene), with aldehydes to afford racemic 5,6-dihydro-γ-pyrones.4 This was followed soon after by the asymmetric catalytic oxo-HDA reaction using chiral Eu(hfc)3.

as the catalyst.\(^5\) This reaction has since become the focal point for the synthesis of six-membered oxygen-containing heterocycles, which are playing an important role as intermediates in, for example, natural compound synthesis.\(^6\) Since this initial report, a large number of highly stereoselective catalytic oxo-HDA reactions (aldehydes and ketones as dienophiles) catalyzed by Lewis and Brønsted acids have been developed.\(^7\) In the direct-electron demand oxo-HDA reaction, the Lewis and Brønsted acid catalysts increase the reactivity of the diene activating the carbonyl group by lowering the LUMO\(_{\text{dienophile}}\) energy and enhancing interaction with the HOMO\(_{\text{dienophile}}\), thereby reducing the activation energy for the process.\(^8\)

Aldehydes have been used as dienophiles in the majority of the developed oxo-HDA reactions, while the ketone functionality, for steric and electronic reasons, is a much poorer dienophile compared to the aldehyde. Therefore, there are only few reports to successful oxo-HDA reactions of simple ketones to form oxygen-containing quaternary centers,\(^9\) although the stereoselective formation of quaternary stereocenters is of great importance for the synthesis of optically pure natural products and pharmaceuticals.\(^{10}\)

In this paper, we present that aldehyde and ketone N-oxy-pyridines undergo enantioselective oxo-HDA reactions with electron-rich dienophiles, leading to optically active \(\gamma\)-pyrones having the attractive 1-oxy-pyridine functionality, which can be converted to the corresponding pyridine derivatives.\(^{11}\) The attractive features of this new reaction are (i) the introduction of chiral carbon atoms attached to 1-oxy-pyridines or pyridines, (ii) both aldehydes and ketones undergo the oxo-HDA reactions with dienes when using the same catalytic system, and finally (iii) it is shown that the reaction proceeds by the Mukaiyama-aldol pathway mechanism. As far as we know, only a single successful example of catalytic enantioselective oxo-HDA reaction between pyridine-2-carbaldehyde and activated diene has been reported. Feng, Jiang, and co-workers have shown that chiral titanium-(IV)–BINOL complexes can catalyze the reaction in moderate yield and with 92% ee.\(^{12}\) Furthermore, according to the best of our knowledge, there has not been reported any asymmetric oxo-HDA reaction between keto-pyridines and activated dienes.

Results and Discussion

We have recently demonstrated that bidentate coordinating bisoxazoline\(^{13}\) (box)–Cu(II) complexes are effective chiral Lewis acid catalysts for the Mukaiyama-aldol reaction between ketene silyl acetals and N-oxy-pyridine-2-carbaldehydes.\(^{3}\) The "trick" in these reactions was to oxidize pyridine to the corresponding N-oxy-pyridine to facilitate an optimal bidentate coordination of the reagent to the chiral Lewis acid, as the non-oxidized pyridine derivatives gave low enantioselectivity. On the basis of these results, we thought that these catalytic systems might be suitable for the oxo-HDA reaction of N-oxy-pyridine-2-carbaldehyde derivatives \(1\) and N-oxy-pyridine-2-yl-ethanone \(2\) with electron-rich dienes 3 to synthesize six-membered oxygen-containing heterocycles 5 and 6 (eq 1).

The higher reactivity of aldehydes than ketones prompted us to perform the initial screening reactions with 5-bromo-N-oxy-pyridine-2-carbaldehyde \(1\) and the commercially available 1-methoxy-3-(trimethylsiloxy)butadiene \(3\) (Danishefsky’s diene).
ene) (eq 2). Applying the same reaction conditions as used before in the Mukaiyama-aldol reaction between ketene silyl acetals and N-oxo-pyridine-2-carbaldehyde derivatives, CH$_2$C$_2$ as a solvent and (S)-Cu(OTf)$_2$ complex as catalyst at $\text{-}40\, ^\circ\text{C}$, gave the HDA-adduct 5a in only 30% yield and moderate 80% ee (Table 1, entry 1). Other solvents were also tested with slightly better yields, and, as expected for the (S)-Cu(OTf)$_2$ complex (entry 3), also catalyzed the reaction, but gave the product 5a with moderate yield and poor enantioselectivity (entries 2, 3). Different Lewis acids, in a combination with (S)-Cu(OTf)$_2$, the opposite enantiomer of the oxo-HDA adduct with poor yield and 78% ee (entry 6). Interestingly, the use of (4R,5S)-Cu(OTf)$_2$ as the catalyst in toluene gave in 83% isolated yield and only 40% ee (entry 8). It appeared that the use of toluene gave highly improved yields (entry 8). Conversely, CH$_2$C$_2$ improved the enantioselectivity, but deteriorated the yield (entry 7). Subsequent experiments showed that the use of a toluene-Ch$_2$C$_2$ mixture (4:1) gave 5a with the best overall result (47% yield and 93% ee) (entry 9). It should be noted that short exposure time (less than 3 h) of the reaction mixture to trifluoroacetic acid (TFA) gave a mixture of the unsaturated six-membered ring 5a and the not-cyclized open-chain Mukaiyama-aldol adduct, when longer exposure time gave just the unsaturated six-membered rings.\(^\text{16}\)

Under the optimized reaction conditions (Table 1, entry 9), the oxo-HDA reaction with a range of different pyridine-, isoquinoline-, and N-oxo-quinoline-2-carbaldehyde derivatives was performed (Table 2). The oxo-HDA adducts were obtained in moderate to good yields and high enantiomeric excesses. The presence of bromine in position five of the pyridine ring led to a high enantiomeric excess of the reaction product, while the bromine in position six of the pyridine gave lower enantiomeric-lobility, probably due to steric reasons (entry 1 vs entry 3). Interestingly, the presence of the larger phenyl group in position six of the pyridine ring does not affect the enantioselectivity negatively; on the contrary, it improves the enantioselectivity. This might be due to an electronic interaction of the phenyl group in position six of the pyridine ring does not affect the enantioselectivity negatively; on the contrary, it improves the enantioselectivity. Interestingly, the presence of the methyl group in position six of N-oxo-pyridine-2-carbaldehyde give poorer results (entry 5). N-Oxy-quinoline and N-oxo-isoquinoline-derivatives worked almost as efficiently as N-oxo-pyridines and provided the oxo-HDA adducts 5f,g in good yields, but with lower enantiomeric excesses (entries 6, 7).

Next, we explored the possibility of using the electron-rich 1,3-dimethoxy-1-(trimethylsiloxy)butadiene (Brassard’s diene)\(^\text{17}\) 3c in oxo-HDA reaction with N-oxo-pyridine-2-carbaldehyde 1b as a reaction promoting agent. Interestingly, the reaction of Brassard’s diene gave only the vinyllogous\(^\text{18}\) Mukaiyama-aldol adduct 5h in 81% yield and 85% ee, and no trace of the cyclic HDA adduct was observed (eq 3).

Table 1. Screening of Reaction Conditions for the Catalytic Enantioselective Addition of 1-Methoxy-3-(trimethylsiloxy)butadiene 3a to 5-Bromo-N-oxo-pyridine-2-carbaldehyde 1a Catalyzed by Chiral Lewis Acid Complexes\(^\text{a,b}\)

<table>
<thead>
<tr>
<th>entry</th>
<th>ligand</th>
<th>Lewis acid</th>
<th>solvent</th>
<th>temp. (°C)</th>
<th>yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a</td>
<td>Cu(OTf)$_2$</td>
<td>CH$_2$C$_2$</td>
<td>40</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>2</td>
<td>4a</td>
<td>Cu(OTf)$_2$</td>
<td>Tol</td>
<td>40</td>
<td>49</td>
<td>76</td>
</tr>
<tr>
<td>3</td>
<td>4a</td>
<td>Cu(OTf)$_2$</td>
<td>THF</td>
<td>40</td>
<td>41</td>
<td>79</td>
</tr>
<tr>
<td>4</td>
<td>4a</td>
<td>Zn(OTf)$_2$</td>
<td>CH$_2$C$_2$</td>
<td>40</td>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4b</td>
<td>Mg(OTf)$_2$</td>
<td>CH$_2$C$_2$</td>
<td>40</td>
<td>44</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>4b</td>
<td>Cu(OTf)$_2$</td>
<td>CH$_2$C$_2$</td>
<td>40</td>
<td>30</td>
<td>78c</td>
</tr>
<tr>
<td>7</td>
<td>4c</td>
<td>Cu(OTf)$_2$</td>
<td>CH$_2$C$_2$</td>
<td>40</td>
<td>32</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>4c</td>
<td>Cu(OTf)$_2$</td>
<td>Tol</td>
<td>40</td>
<td>83</td>
<td>40</td>
</tr>
<tr>
<td>9</td>
<td>4c</td>
<td>Cu(OTf)$_2$</td>
<td>Tol/CH$_2$C$_2$</td>
<td>40</td>
<td>47</td>
<td>93</td>
</tr>
</tbody>
</table>

a Reaction conducted on a 0.25 mmol scale. b 100% conversion in all reactions after 16 h, estimated by 1H NMR spectroscopy. c Yield of isolated product after purification by column chromatography. d Enantiomeric excess measured by chiral stationary phase HPLC. e Refers to the opposite enantiomer. f Tol/CH$_2$C$_2$ (4:1).

The construction of quaternary stereocenters, due to the congestion imposed by the four attached substituents, is a

challenge in organic chemistry. The Diels–Alder reaction is one of the most general approaches to form all-carbon quaternary stereocenters. Moreover, the oxoHDA reaction of ketones as dienophiles and electron-rich dienes gives us the possibility to obtain the highly interesting oxo-substituted quaternary stereocenters. As mentioned above, very few examples of asymmetric HDA reactions of ketones have been reported, and almost all of them were with activated ketones.\(^9\) However, recently, the group of Campagne achieved high yields and enantioselectivities by using unactivated ketones.\(^19\)

In an attempt to extend the developed oxo-HDA reaction with aldehydes shown (Table 2 and eq 2), and because of the significant relevance of asymmetric quaternary stereogenic centers in synthetic chemistry,\(^10\) we decided to implement the oxo-HDA reaction of the activated N-oxo-pyridine-2-yl-ethanone 2a with electron-rich dienes (Table 3). The reaction of ketone 2a with 2 equiv of Danishefsky’s diene 3a at \(-40^\circ\text{C}\) catalyzed by (4R,5S)-4c-Cu(OTf)\(_2\) complex gave only 60% conversion. Warming the reaction mixture to \(-30^\circ\text{C}\) gave full conversion. To our delight, we found that the reaction with 2a gave better yields and enantioselectivities than the reaction with aldehydes. Ketone 2a reacted with the Danishefsky’s type dienes 3a,b smoothly in good yields and excellent enantioselectivities (Table 3, entries 1, 2). The reaction of 2a with Brassard’s diene 3c gave enantiomerically pure vinylogous Mukaiyama-aldol adduct 6c in very good yield (entry 3). As previously observed with aldehyde 1b and 3c (eq 3), no trace of the cyclic oxo-HDA adduct was detected. Furthermore, no decomposition of 3c was observed in the presence of the Lewis acid.\(^20\)

The absolute configurations of the newly formed stereogenic centers were established, assuming a uniform reaction mechanism, by a single-crystal X-ray crystallographic analysis of adduct 5a (see Supporting Information). The relative configuration of major diastereomer 6b was assigned to be anti by NOEDIF experiment.

In the reaction of carbonyl compounds with electron-rich conjugated dienes, two mechanistic pathways have generally been taken into account: (i) the concerted HDA-cycloaddition or (ii) the Mukaiyama-aldol pathway. The reaction course is

dependent on the Lewis acid employed.21 1H NMR observations showed that in the reaction of the N-oxo-pyridine-2-carbaldehyde derivatives with Danishefsky’s diene, a short exposure time (less than 3 h) to TFA gave the mixture of the unsaturated six-membered rings 5a–g and the open-chain Mukaiyama-aldol adducts. Moreover, in the oxo-HDA reaction of 1-oxo-pyridine derivatives 1b and 2a with Brassard’s diene 3c, only the not-silylated vinylogous Mukaiyama-aldol adducts 5h and 6c were isolated, without trace of the corresponding silylated open-chain adducts or the cycloaducts. A possible explanation for the isolation of the Mukaiyama-aldol adducts could be the stability of the formed open-chain methyl ester, due to hydrogen-bond stabilization between the N-oxide and the hydroxyl group (Figure 1). These observations indicated that the oxo-HDA reaction of N-oxo-pyridine-2-carbaldehyde and ketone derivatives with electron-rich dienes might proceed by a stepwise Mukaiyama-aldol mechanism.

We propose that both the oxygen atoms of the carbonyl group and N-oxide in the N-oxo-pyridine derivative coordinate to the copper(II) center in a bidentate fashion. This leads to a square-planar distorted intermediate in which the Si-face of the reacting carbonyl functionality is available for Mukaiyama-aldol approach of the diene. To account for the diastereoselectivity of the reaction (compound 6b), the OTMS-group and R1 (R1 = CH\textsubscript{3}) in the Z-alkene have to point away from the phenyl groups in the chiral bisoxazoline ligand to minimize steric repulsions (Figure 2). As the last step, treatment with TFA gave the six-membered heterocyclic compound.

Conclusions

In conclusion, we have demonstrated that the chiral bisoxazoline copper(II) Lewis-acid complex catalyzes the oxo-HDA reaction between N-oxo-pyridine-2-carbaldehydes and electron-rich dienes in moderate yields and good enantiomeric excesses.

Furthermore, and most importantly, the oxo-HDA reactions with 1-pyrindin-2-yl-ethanone gave better yields and excellent enantiomeric excesses. Finally, we have shown that the oxo-HDA reaction of the privileged bidentate N-oxo-pyridine-2-carbaldehyde and ketone derivatives with electron-rich dienes, catalyzed by bisoxazoline copper(II) Lewis acid complexes, proceeds by the Mukaiyama-aldol pathway.

Experimental Section

General Procedure for Aldehydes. M(OTf)\textsubscript{2} (25 \textmu mol) and the corresponding C\textsubscript{2}-bisoxazoline 4a–c (26 \textmu mol) were stirred under vacuum in a oven-dried Schlenk tube for 1 h. The tube was then filled with \textit{N},\textit{N}-dimethylchloroform (0.5 mL) and toluene (0.5 mL) were added, and the resulting solution was stirred for 30 min. The solution was cooled to \(-40^\circ\text{C}\), and then a solution of the aldehyde 1a–g (0.25 mmol) in dry toluene (1 mL) was added slowly. The resulting solution was stirred for 1 h at the same temperature, and afterward the solution of diene 3 (0.28 mmol) in dry toluene (0.5 mL) was added dropwise. The reaction mixture was kept stirring at \(-40^\circ\text{C}\) for 16 h, and then trifluoroacetic acid (TFA) (0.1 mL in 20 mL of CH\textsubscript{2}Cl\textsubscript{2}) was added. The solution was stirred vigorously at room temperature for 3 h. The products 5a–g were isolated directly, without aqueous workup by FC.

General Procedure for Ketones. Cu(OTf)\textsubscript{2} (25 \textmu mol) and the corresponding C\textsubscript{2}-bisoxazoline 4d (26 \textmu mol) were stirred under vacuum in a oven-dried Schlenk tube for 1 h. The tube was then filled with \textit{N},\textit{N}-dimethylchloroform (0.5 mL) and toluene (0.5 mL) were added, and the resulting solution was stirred for 30 min. The solution was cooled to \(-30^\circ\text{C}\), then a solution of the ketone 2 (0.25 mmol) in dry toluene (1 mL) was added slowly. The resulting solution was stirred for 1 h at the same temperature, and afterward the solution of diene 3 (0.5 mmol) in dry toluene (0.5 mL) was added dropwise. The reaction was kept stirring at \(-30^\circ\text{C}\) for 16 h, and then TFA (0.1 mL in CH\textsubscript{2}Cl\textsubscript{2}) was added. The solution was stirred at room temperature for 3 h. The products 6a–e were isolated directly, without aqueous workup by FC.

2-(5-Bromo-N-oxo-pyridin-2-yl)-2,3-dihydro-pyran-4-one (5a). FC eluent EtOAc. 1H NMR \(\delta\) 8.59 (s, 1H), 7.81 (dd, \textit{J} = 8.6, 1.8 Hz, 1H), 7.71 (m, 2H), 5.96 (dd, \textit{J} = 14.0, 3.6 Hz, 1H), 5.56 (dd, \textit{J} = 6.2, 1.2 Hz, 1H), 3.12 (ddd, \textit{J} = 16.8, 3.6, 1.2 Hz, 1H), 2.72 (dd, \textit{J} = 16.8, 14.0 Hz, 1H). 13C NMR \(\delta\) 193.3, 165.0, 149.0, 142.1, 132.7, 125.6, 121.2, 108.6, 76.1, 39.2 (TOF ES+M + Na+) calcd for C\textsubscript{10}H\textsubscript{9}BrNNaO\textsubscript{3} 291.9585; found 291.9588; \(\Delta m = -150.4 (c = 1.00, \text{CHCl}_3, 93\%\text{ ee (S)})\). HPLC: Daicel Chiralpak AD, hexane/2-propanol (80/20), flow rate = 1.0 mL/min (\(t_{\text{R}} = 30.4\text{ min (major enantiomer)}\); \(t_{\text{s}} = 52.1\text{ min (minor enantiomer)}\)).

2-(N-Oxy-pyridin-2-yl)-2,3-dihydro-pyran-4-one (5b). FC eluent EtOAc after TFA. 1H NMR \(\delta\) 8.36 (d, \textit{J} = 6.0, Hz, 1H), 7.83 (dd, \textit{J} = 8.0, 2.0 Hz, 1H), 7.73 (d, \textit{J} = 6.2 Hz, 1H), 7.64 (dt, \textit{J} = 8.0, 2.0 Hz, 1H), 6.04 (dd, \textit{J} = 13.8, 3.6 Hz, 1H), 5.57 (dd, \textit{J} = 6.0, 1.2 Hz, 1H), 3.15 (ddd, \textit{J} = 16.8, 3.6, 1.2 Hz, 1H), 2.75 (dd, \textit{J} = 16.8, 13.8 Hz, 1H). 13C NMR \(\delta\) 193.3, 165.0, 141.0, 130.5, 127.4, 125.3, 108.6, 76.3, 54.9, 39.5 (TOF ES+M + Na+) calcd for C\textsubscript{10}H\textsubscript{9}BrNNaO\textsubscript{3} 214.0480; found 214.0480. \(\Delta m = -28.0 (c = 1.00, \text{CHCl}_3, 90\%\text{ ee (S)})\). HPLC: Daicel Chiralpak AD, hexane/2-propanol (80/20), flow rate = 1.0 mL/min (\(t_{\text{R}} = 37.3\text{ min (major enantiomer)}\); \(t_{\text{s}} = 65.0\text{ min (minor enantiomer)}\)).

2-(6-Bromo-N-oxo-pyridin-2-yl)-2,3-dihydro-pyran-4-one (5c). FC eluent EtOAc after TFA. 1H NMR \(\delta\) 7.78 (dd, \textit{J} = 8.2, 2.0 Hz, 1H), 7.61 (dd, \textit{J} = 8.2, 2.0 Hz, 1H), 7.59 (dd, \textit{J} = 6.0, 1.2 Hz, 1H), 7.28 (t, \textit{J} = 8.2 Hz, 1H), 5.96 (dd, \textit{J} = 13.4, 3.6 Hz, 1H), 5.48 (dd, \textit{J} = 6.0, 1.2 Hz, 1H), 3.02 (dd, \textit{J} = 16.8, 3.6, 1.2 Hz, 1H), 2.62 (dd, \textit{J} = 13.8, 13.4 Hz, 1H). 13C NMR \(\delta\) 193.3, 165.0, 151.5, 134.8, 131.9, 129.4, 124.0, 108.6, 77.0, 39.3 (TOF ES+M + Na+) calcd for C\textsubscript{10}H\textsubscript{9}BrNNaO\textsubscript{3} 291.9585; found 291.9588.

291.9586. \([\alpha]_{D}^{23} = -112.0 \) (c = 1.00, CHCl₃, 79% ee (S)). HPLC: Daicel Chiralpak AD, hexane-2-propanol (80/20), flow rate = 1.0 mL/min \((r_{1} = 41.6 \) min (major enantiomer); \(r_{2} = 51.8 \) min (major enantiomer)).

2-(N-Oxy-6-phenyl-pyridin-2-yl)-2,3-dihydro-pyran-4-one (5d). FC eluent EtOAc afterward EtOAc/EtOH 1:1. \(^{1}H\) NMR \(\delta 7.32 \) (d, \(J = 6.0 \) Hz, 1H), 6.50 (d, \(J = 4.8 \) Hz, 1H), 6.13 (d, \(J = 12.0 \) Hz, 1H), 5.86 (ddd, \(J = 5.6 \) Hz, 1H), 7.54 (m, 1H), 7.32 (d, \(J = 8.2 \) Hz, 1H), 7.28 (m, 1H), 6.50 (ddd, \(J = 5.6 \) Hz, 1H). 13C NMR \(\delta 91.5, 85.1, 57.3, 107.8, 139.7, 135.7, 128.5, 125.7, 123.9, 76.8, 39.7 \) (TOF ES\(^{+}\)). HPLC: Daicel Chiralpak AD, hexane-2-propanol (80/20), flow rate = 1.0 mL/min \((r_{1} = 38.7 \) min (major enantiomer); \(r_{2} = 41.4 \) min (major enantiomer)).

2-[(6-Methyl-N-oxy-pyridin-2-yl)-2,3-dihydro-pyran-4-one (5e), FC eluent EtOAc afterward EtOAc/EtOH 1:1. \(^{1}H\) NMR \(\delta 7.32 \) (d, \(J = 6.0 \) Hz, 1H), 6.07 (dd, \(J = 13.8 \) Hz, 1H), 6.20 (d, \(J = 12.8 \) Hz, 1H), 7.32 (dd, \(J = 5.6 \) Hz, 1H), 7.17 (d, \(J = 8.2 \) Hz, 1H), 3.18 (dd, \(J = 6.8, 1.2 \) Hz, 1H), 2.73 (dd, \(J = 16.8, 13.8 \) Hz, 1H), 2.53 (s, 3H). \(^{13}C\) NMR \(\delta 193.5, 165.0, 151.3, 150.6, 133.7, 131.0, 127.4, 129.5, 129.5, 128.5, 125.7, 108.5, 76.8, 39.7 \) (TOF ES\(^{+}\)). HPLC: Daicel Chiralpak AD, hexane-2-propanol (80/20), flow rate = 1.0 mL/min \((r_{1} = 35.6 \) min (major enantiomer); \(r_{2} = 45.6 \) min (major enantiomer)).

2-(N-Oxy-quinolin-2-yl)-2,3-dihydro-pyran-4-one (5f). FC eluent EtOAc afterward EtOAc/EtOH 1:1. \(^{1}H\) NMR \(\delta 7.32 \) (d, \(J = 6.0 \) Hz, 1H), 6.50 (d, \(J = 4.8 \) Hz, 1H), 6.13 (d, \(J = 12.0 \) Hz, 1H), 5.86 (ddd, \(J = 5.6 \) Hz, 1H), 7.54 (m, 1H), 7.32 (d, \(J = 8.2 \) Hz, 1H), 7.28 (m, 1H), 6.50 (ddd, \(J = 5.6 \) Hz, 1H). 13C NMR \(\delta 91.5, 85.1, 57.3, 107.8, 139.7, 135.7, 128.5, 125.7, 123.9, 76.8, 39.7 \) (TOF ES\(^{+}\)). HPLC: Daicel Chiralpak AD, hexane-2-propanol (80/20), flow rate = 1.0 mL/min \((r_{1} = 38.7 \) min (major enantiomer); \(r_{2} = 41.4 \) min (major enantiomer)).

Supporting Information Available: Complete \(^{1}H\) and \(^{13}C\) NMR spectra of compounds 5a–h and 6a–e. X-ray structural data for 5a (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

Acknowledgment. This work was made possible by a grant from The Danish National Research Foundation. A.L. thanks Eusko Jaurlaritza/Gobierno Vasco for a postdoctoral fellowship. A.M. thanks NordForsk for financial support. We are grateful to Dr. Jacob Overgaard for X-ray crystallographic analysis of 5a.