Hydrogen–fluorine exchange in NaBH$_4$–NaBF$_4$†

L. H. Rude,a U. Filsø,a V. D’Anna,b A. Spyratou,b B. Richter,b S. Hino,c
O. Zavorotynska,cd M. Baricco,d M. H. Serby,*b B. C. Hauback,c H. Hagemann,b
F. Besenbacher,*a J. Skibstedd and T. R. Jensen*a

Hydrogen–fluorine exchange in the NaBH$_4$–NaBF$_4$ system is investigated using a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF$_6$H$_2$ in the temperature range $T = 200$ to 215 °C. Combined use of solid-state 19F MAS NMR, FT-IR and DFT calculations supports the formation of a BF$_2$H$_2$– complex ion, reproducing the observation of a 19F chemical shift at -144.2 ppm, which is different from that of NaBF$_4$ at -159.2 ppm, along with the new absorption bands observed in the IR spectra. After further heating, the fluorine substituted compound becomes X-ray amorphous and decomposes to NaF at ~ 310 °C. This work shows that fluorine-substituted borohydrides tend to decompose to more stable compounds, e.g. NaF and BF$_3$ or amorphous products such as closo-boranes, e.g. Na$_2$B$_{12}$H$_{12}$. The NaBH$_4$–NaBF$_4$ composite decomposes at lower temperatures (300 °C) compared to NaBF$_4$ (476 °C), as observed by thermogravimetric analysis. NaBH$_4$–NaBF$_4$ (1 : 0.5) preserves 30% of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 8% for NaBH$_4$ as measured using Sievert’s method under identical conditions, but more than 50% using prolonged hydrogen absorption time. The reversible hydrogen storage capacity tends to decrease possibly due to the formation of NaF and Na$_2$B$_{12}$H$_{12}$. On the other hand, the additive sodium fluoride appears to facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material from the sample container for samples of NaBH$_4$–NaF.

1 Introduction

Hydrogen has the highest gravimetric energy density but is difficult to store in a compact form, which may be achieved in the solid state.$^{1-7}$ Currently, metal borohydride materials are considered promising for hydrogen storage, however, the kinetics and thermodynamics of the hydrogen uptake and release need to be further improved.$^{8-10}$ Anion substitution has recently been suggested as a new method to improve the hydrogen storage properties due to possible changes in the lattice energy, chemical pressure and metal–hydrogen bond strength.8,11 Fluorine substitution was reported for sodium hexahydridoalanate, Na$_3$AlH$_{6}$,12 and ab $initio$ calculations suggest a decreased enthalpy upon substitution, which is verified experimentally.13,14 Anion substitution in metal borohydride materials was reported for LiBH$_4$–LiX, where X = Cl, Br, and I in NaBH$_4$–NaCl, in Ca(BH$_4$)$_2$–CaX$_2$, X = Cl and I, and in Mg(BH$_4$)$_2$–MgX$_2$, X = Cl and Br.$^{15-24}$ The change in the hydrogen storage properties of anion-substituted metal borohydride using the heavier halides, Cl, Br or I, is small and may lead to a stabilization, which tends to facilitate hydrogen absorption.16,19,24 In contrast, calculations reveal that fluorine substitution in LiBH$_4$ is not thermodynamically favored but should

Received 4th July 2013,
Accepted 5th September 2013
DOI: 10.1039/c3cp52815d
www.rsc.org/pccp

PAPER

1 Introduction

Hydrogen has the highest gravimetric energy density but is difficult to store in a compact form, which may be achieved in the solid state.$^{1-7}$ Currently, metal borohydride materials are considered promising for hydrogen storage, however, the kinetics and thermodynamics of the hydrogen uptake and release need to be further improved.$^{8-10}$ Anion substitution has recently been suggested as a new method to improve the hydrogen storage properties due to possible changes in the lattice energy, chemical pressure and metal–hydrogen bond strength.8,11 Fluorine substitution was reported for sodium hexahydridoalanate, Na$_3$AlH$_{6}$,12 and ab $initio$ calculations suggest a decreased enthalpy upon substitution, which is verified experimentally.13,14 Anion substitution in metal borohydride materials was reported for LiBH$_4$–LiX, where X = Cl, Br, and I in NaBH$_4$–NaCl, in Ca(BH$_4$)$_2$–CaX$_2$, X = Cl and I, and in Mg(BH$_4$)$_2$–MgX$_2$, X = Cl and Br.$^{15-24}$ The change in the hydrogen storage properties of anion-substituted metal borohydride using the heavier halides, Cl, Br or I, is small and may lead to a stabilization, which tends to facilitate hydrogen absorption.16,19,24 In contrast, calculations reveal that fluorine substitution in LiBH$_4$ is not thermodynamically favored but should
indeed provide a destabilization of lithium borohydride.25,26 Furthermore, fluorine preferably exists on the same boron atom, i.e. formation of one BH\textsubscript{2}F\textsubscript{2}- is preferred compared to \(2 \times \text{BH}_\text{F}^\text{-}\).10,25,27,28 DFT also reveals that room temperature formation of solid solutions between LiBH\textsubscript{4} and LiBF\textsubscript{4} is not thermodynamically favoured.25 Experimental reports indicate fluorine substitution in studies of MgB\textsubscript{2}-LiF and LiBH\textsubscript{4}-TiF\textsubscript{3} and also for the KBH\textsubscript{4}-KBF\textsubscript{4} system.29-31

In this paper, the physical, structural and hydrogen storage properties of the NaBH\textsubscript{4}-NaBF\textsubscript{4} composite are investigated using \textit{in situ} synchrotron radiation powder X-ray diffraction (SR-PXD), solid-state magic-angle spinning (MAS) NMR spectroscopy, infrared spectroscopy (IR), simultaneous differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Sieverts method. DFT calculations on isolated BF\textsubscript{4}-\textsubscript{−}H\textsubscript{x}− ions were also performed and spectral parameters were computed.

2 Experimental section

Sample preparation

Samples of NaBH\textsubscript{4}-NaBF\textsubscript{4} in the molar ratio of 1:0.1 and 1:0.5, denoted S1 and S2, and reference samples of NaBH\textsubscript{4} and NaBF\textsubscript{4}, denoted R1 and R2, respectively, were ball milled (BM) using the same conditions comprising 15 times 2 min of milling each intervened by 2 min breaks to avoid heating of the samples.32 Ball milling was conducted under inert conditions in an argon atmosphere with a Fritsch Pulverisette P4 planetary mill using 80 mL tungsten carbide (WC) containers and a sample powder-to-ball mass ratio of approximately 1:30 (WC balls, o.d. 10 mm). Fractions, \(\sim 0.5\) g, of the sample NaBH\textsubscript{4}-NaBF\textsubscript{4} (1:0.5), S2, were transferred to corundum crucibles, placed in sealed argon-filled quartz tubes, and annealed in a furnace at a fixed temperature. The first sample was annealed at 200 °C for 72 hours and is denoted S2-200. The second and third samples were annealed at 275 and 300 °C, respectively, for 1 hour to analyze the decomposition reaction (S2-275 and S2-300). A hand mixed (HM, \(\sim 10\) min) sample of NaBH\textsubscript{4}-NaBF\textsubscript{4} (1:0.5), S2, was transferred using an agate mortar to examine the effect of ball milling. Samples S4 (1:1) and S5 (3:1) are hand mixed (HM, \(\sim 10\) min), containing physical mixtures of NaBH\textsubscript{4} and NaBF\textsubscript{4}.

Finally, a ball-milled sample of NaBH\textsubscript{4}-NaF (1:0.25) denoted S6 was prepared to investigate the properties of NaF used as an additive. For NMR measurements a sample of NaF was used as received, R3. All samples are listed in Table 1. The chemicals used were: NaBH\textsubscript{4} (\(\geq 99.99\%\), Aldrich), NaBF\textsubscript{4} (\(\geq 98\%\), Aldrich) and NaF (>95%, Aldrich). The preparation and manipulation of all samples were performed in an argon-filled glovebox using a circulation purifier.

Theoretical calculations

Theoretical DFT calculations were performed on the isolated BH\textsubscript{4}-\textsubscript{−}F\textsubscript{2}- ions at B3-LYP/6-31G** level using the Gaussian program13 with B3-LYP/6-31G**. Isotropic shielding tensors were computed with the Gauge-Independent Atomic Orbital (GIAO) method.33

Table 1

List of investigated samples. The composition of the samples is given as relative molar ratios and molar fractions and the theoretical gravimetric hydrogen content is denoted \(\rho_m(H_2)\). The sample preparation methods are either ball milling (BM) or hand-mixing in a mortar (HM) and in some cases combined with annealing (A) in an argon atmosphere.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Materials</th>
<th>Molar ratio (n(\text{NaBF}_4)/n(\text{total}))</th>
<th>Preparation</th>
<th>(\rho_m(H_2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>NaBH\textsubscript{4}-NaBF\textsubscript{4}</td>
<td>1:0.1</td>
<td>BM</td>
<td>8.4</td>
</tr>
<tr>
<td>S2</td>
<td>NaBH\textsubscript{4}-NaBF\textsubscript{4}</td>
<td>1:0.5</td>
<td>BM</td>
<td>4.3</td>
</tr>
<tr>
<td>S2-200</td>
<td>NaBH\textsubscript{4}-NaBF\textsubscript{4}</td>
<td>1:0.5</td>
<td>BM, Ab</td>
<td>4.3</td>
</tr>
<tr>
<td>S2-275</td>
<td>NaBH\textsubscript{4}-NaBF\textsubscript{4}</td>
<td>1:0.5</td>
<td>BM, Ac</td>
<td>—</td>
</tr>
<tr>
<td>S2-300</td>
<td>NaBH\textsubscript{4}-NaBF\textsubscript{4}</td>
<td>1:0.5</td>
<td>BM, Ad</td>
<td>—</td>
</tr>
<tr>
<td>S3</td>
<td>NaBH\textsubscript{4}-NaBF\textsubscript{4}</td>
<td>1:0.5</td>
<td>HM</td>
<td>4.3</td>
</tr>
<tr>
<td>S4</td>
<td>NaBH\textsubscript{4}-NaBF\textsubscript{4}</td>
<td>1:1</td>
<td>HM</td>
<td>2.7</td>
</tr>
<tr>
<td>S5</td>
<td>NaBH\textsubscript{4}-NaBF\textsubscript{4}</td>
<td>1:0.33</td>
<td>HM</td>
<td>5.4</td>
</tr>
<tr>
<td>S6</td>
<td>NaBH\textsubscript{4}-NaF</td>
<td>0.25</td>
<td>BM</td>
<td>6.3</td>
</tr>
<tr>
<td>R1</td>
<td>NaBH\textsubscript{4}</td>
<td>—</td>
<td>BM</td>
<td>10.7</td>
</tr>
<tr>
<td>R2</td>
<td>NaBF\textsubscript{4}</td>
<td>—</td>
<td>BM</td>
<td>8.7</td>
</tr>
<tr>
<td>R3</td>
<td>NaF</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

a \(n(\text{NaF})/n(\text{total})\). b Annealed at 200 °C for 72 hours. c Annealed at 275 °C for 1 hour. d Annealed at 300 °C for 1 hour.

Synchrotron radiation powder X-ray diffraction

\textit{In situ} synchrotron radiation powder X-ray diffraction (SR-PXD) data for sample S2 were measured at beamline BM01A at the Swiss-Norwegian Beam Lines (SNBL), European Synchrotron Radiation Facility (ESRF), Grenoble, France, using a MAR345 image plate detector. The samples were mounted in glass capillaries (0.5 mm o.d.) and sealed to prevent contact with air. The data were collected with a sample-to-detector distance of 250 mm, a 30° rotation of the capillaries during data collection and 30 s X-ray exposure time. The wavelength, \(\lambda = 0.70082 \AA\), was calibrated using an external standard, LaB\textsubscript{6}. The sample was heated from room temperature (RT) to 450 °C at a heating rate of \(\Delta T/\Delta t = 5 \text{ °C min}^{-1}\). SR-PXD data for sample S2-200 were measured at the MAX-II synchrotron at beamline 1711 in the research laboratory MAX-lab, Lund, Sweden using a MAR165 CCD detector system.34 The sample was mounted in sapphire (Al\textsubscript{2}O\textsubscript{3}) single crystal tubes (0.79 mm i.d.) in an argon-filled glovebox.35,36 The experiment was conducted at \(p(\text{Ar}) = 1 \text{ bar}\), in the temperature range from RT to 385 °C (\(\Delta T/\Delta t = 5 \text{ °C min}^{-1}\)) and \(\lambda = 0.94499 \AA\). The data were collected with a sample-to-detector distance of 87 mm, an X-ray exposure time of 30 s per PXD pattern.

The data were integrated using the Fit2D program and analyzed using the Rietveld methods in the FullProf suite.37,38 The sequential refinement of the \textit{in situ} SR-PXD data was performed to follow the change in composition and unit cell volumes. The intensity of selected Bragg reflections was integrated and normalized in order to illustrate changes in the sample composition as a function of temperature (the relative amount, \(x_i(t) = I_i(t)/I_{i,\text{max}}\) of compound \(i\) at time \(t\)).

Solid-state MAS NMR spectroscopy

Solid-state \(^{11}\text{B},^{19}\text{F}\) and \(^{23}\text{Na}\) magic-angle spinning (MAS) spectra were collected for samples S2, S2-275 and S2-300 on a Varian INOVA-400 (9.39 T) spectrometer using a home-built CP/MAS probe for 5 mm o.d. rotors. The \(^{19}\text{F}\) MAS NMR spectra were acquired on a Varian INOVA-300 (7.05 T) spectrometer.
employing the high-frequency 1H/19F channel of a home-built CP/MAS NMR probe for 7 mm o.d. rotors. All spectra were obtained at ambient temperature using air-tight end-capped zirconia (PSZ) rotors packed in an argon-filled glovebox.

The 11B, 19F, and 23Na MAS NMR spectra and chemical shifts are referenced to neat F$_2$B·O(C$_{12}$H$_{25}$)$_3$, neat CCl$_4$F, and a 1.0 M aqueous solution of NaCl, respectively. Simulations and least-squares fitting of the 23Na MAS NMR spectra were performed using the STARS simulation software package. 30

Thermal analysis

Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were performed simultaneously using a Netzsch STA449C Jupiter instrument at a heating rate of 5 °C min$^{-1}$ from RT to 450 °C (S2 and S3) or to 600 °C (S1, R1 and R2) in a flow of He (50 mL min$^{-1}$). The samples were placed in Al$_2$O$_3$ crucibles with a small hole in the lid to prevent the increase of pressure.

Mass spectroscopy

The gas release from the samples of NaBH$_4$–NaBF$_4$ (1 : 0.1, S1) and NaBH$_4$–NaNBF$_4$ (1 : 0.5, S2) was investigated using a MKS Microvision-IP residual gas analyzer (RGA) by mass spectroscopy (MS) attached to an in-house-built temperature-programmed desorption (TPD) setup. The sample was contained in a stainless-steel autoclave and heated from RT to 600 °C (ΔT/$\Delta t = 2$ °C min$^{-1}$) under dynamic vacuum. The pressure in the autoclave was roughly 1 mbar. IR spectra of the evolved gases were measured using an Alcatel ACC 1009 vacuum gauge. The ratios of selected gas components (H$_2$, B$_2$H$_6$, and BF$_3$) were roughly estimated from peak area of calibrated mass spectra. The calibration was performed using NaAlH$_4$ and NaBF$_4$ as sources of H$_2$ and BF$_3$ gases, respectively, to determine the linear relationship between the MS signal and pressure for each gas species. The coefficient for the B$_2$H$_6$ spectrum was determined by fitting the sum of these calibrated spectra with the total pressure. Due to fragmentation of the gas molecules during ionization, the most intense signals from B$_2$H$_6$ and BF$_3$ were mass 26 (B$_2$H$_4^+$) and 49 (BF$_2^+$) and these signals were used for the analysis.

Infrared spectroscopy

Gas-infrared (IR) spectroscopy measurements were performed using a Vertex 70 FT-IR spectrometer (Bruker Optics) in the range 4000 to 600 cm$^{-1}$ with 0.5 cm$^{-1}$ resolution. The sample holder was connected to the gas IR cell and the set-up was degassed to 10$^{-5}$ mbar. IR spectra of the evolved gases were recorded while continuously heating the sample in a closed system from RT to 300 °C (ΔT/$\Delta t = 3$ °C min$^{-1}$) and then at a constant temperature of 300 °C for about 1 hour. The sample NaBH$_4$–NaBF$_4$ (1 : 0.1, S1, 0.083 g) was placed in a quartz tube under an argon atmosphere. After the experiment, the residual sample mass was 0.072 g corresponding to a mass loss of 0.011 g or ca. 13 wt%. Molecular H$_2$ is IR inactive and the measurement aimed to detect other gases such as boranes or BF$_3$. A negative signal is recorded in the 1800–1600 cm$^{-1}$ region corresponding to the water vapor of the background.

Temperature-dependent FTIR experiments on solid samples were performed using a BioRad Excalibur Instrument equipped with a Specac Golden Gate heatable ATR set-up. The spectral resolution was set to be 1 cm$^{-1}$.

Sieverts measurements

Sieverts-type measurements were performed for samples of NaBH$_4$–NaBF$_4$ (1 : 0.5, S2) and NaBH$_4$ (R1) using a PC7pro 2000 instrument from Hy-Energy. 40 The samples were loaded in an autoclave and sealed in an argon atmosphere. The Sieverts-type desorption experiments were performed at p(H$_2$) = 1 bar from RT to 300 °C (ΔT/$\Delta t = 4$ °C min$^{-1}$), followed by constant temperature $T=300$ °C for 2 h, heating from 300 to 550 °C (ΔT/$\Delta t = 4$ °C min$^{-1}$) and prolonged annealing at $T=550$ °C. Hydrogen absorptions were conducted at a fixed temperature of 450 °C for 24 hours at p(H$_2$) = 130 bar.

3 Results and discussion

Theoretical calculations

DFT calculations on all 5 isolated BH$_4^{−}$-Fe$^{−}$ ions ($x = 0$ to $x = 4$) showed that these ions are stable, i.e. no imaginary vibrational frequency was found. The corresponding bond length and angles, the calculated IR spectra as well as the computed isotropic magnetic shielding tensor values are given in the ESI.† Tables S1–S3 and Fig. S1. The total energy (zero point corrected energy) is computed for the BH$_4^{−}$-Fe$^{−}$ ions ($x = 0$ to $x = 4$), which can be used to estimate the reaction energy (at 0 K) for reaction (1).

$$aBH_4^{−} + bBF_3^{−} \rightarrow BH_4^{−} + bBF_3^{−} (a + b = 1) \quad (1)$$

The calculated reaction energy for the formation of the ions BH$_4^{−}$,$\text{BF}_3^{−}$, BH$_4^{−}$,BF$_3^{−}$ and BF$_3^{−}$ was 52, 54 and 28 kJ mol$^{-1}$, respectively. The results indicate that the formation of all mixed hydrogen–fluorine compounds is significantly endothermic (up to ca. 55 kJ mol$^{-1}$).

In situ SR-PXD

The samples of NaBH$_4$–NaBF$_4$ (1 : 0.5, S2 and 1 : 0.5, S2-200) were studied using in situ SR-PXD in the temperature range from RT to 385 °C. The first diffractogram in Fig. 1a measured at 23 °C for sample NaBH$_4$–NaBF$_4$ (1 : 0.5, S2-200) reveals Bragg diffraction peaks from NaBH$_4$ and o-NaBF$_4$. This suggests that no reaction occurred during ball milling and thermal activation of sample S2-200 (200 °C/72 h) prior to the SR-PXD analysis. During heating, the transformation from orthorhombic o-NaBF$_4$ to hexagonal h-NaBF$_4$ polymorphs is observed at 273 °C in accordance with previous studies where this transition was observed at 227 °C. 41 The Bragg reflections from h-NaBF$_4$ disappear at 273 °C, which is significantly lower than the reported melting point, T_{mp}(NaBF$_4$) = 357 °C. 41 The diffracted intensity from NaBH$_4$ continuously decreases during heating from RT to ~211 °C due to increasing thermal vibrations in the material. This is also observed for NaBH$_4$ (R1), see Fig. S2 in the ESI.† NaBH$_4$ in sample S2-200 decomposes between 211 and 320 °C, which is a significantly lower temperature than the range ~450 to 500 °C observed for NaBH$_4$ (R1), see Fig. S2 (ESI†). Formation of NaF is observed in the temperature range 269 to ~350 °C. Integrated, normalized diffracted intensities for selected well-resolved
reflections from the observed compounds are visualized in Fig. 1b. The transformation from o- to h-NaBF₄ at 221 °C is fast and the decomposition of h-NaBF₄ is almost equally fast. Interestingly, the onset of sodium fluoride, NaF, formation occurs when almost all h-NaBF₄ is decomposed leaving a ‘gap’ with limited amounts of crystalline material in the sample. This suggests the presence of amorphous intermediates during decomposition of NaBH₄–NaBF₄.

In a similar in situ SR-PXD study of NaBH₄–NaBF₄ (1 : 0.5, S2) the same ‘gap’ was observed during decomposition, see Fig. S3 (ESI†). However, after disappearance of diffraction from h-NaBF₄ a few of the following diffractograms contain Bragg peaks from a new compound. Numerous diffraction experiments were conducted, also with other sample compositions not included in this publication, but only in one case was the new set of diffraction peaks sufficiently intense to allow indexation (Fig. 2 and Fig. S3, ESI†), using a cubic unit cell, \(a = 6.7616(6) \text{ Å} \) \((V = 309.13(4) \text{ Å}^3, \text{ and possible space group } Fm\overline{3}m)\). Thus, this compound may have a Rock salt type structure isomorphous to NaBH₄ but with a larger unit cell volume. A structural model for Rietveld refinement was constructed with fluorine and hydrogen statistically distributed on the same position as hydrogen in the NaBH₄ structure. The refined composition is NaBH₂₁F₁₉ (at \(T = 208 \degree C \)) in agreement with a unit cell volume increase of 21.0% \((V/Z = 77.3 \text{ Å}^3)\) compared to that for NaBH₄ \((V/Z = 63.9 \text{ Å}^3, \ T = 208 \degree C \) and a decrease of 7.4% compared to NaBF₄ \((V/Z = 83.5 \text{ Å}^3, \ T = 207 \degree C)\). In fact, the unit cell volume for NaBH₄ in sample S2 (see Fig. 2) is slightly larger than the value for pristine NaBH₄ \((V/Z = 61.1 \text{ Å}^3 \text{ at } T = 210 \degree C, \text{ see Fig. S2, ESI†})\). However, the fluorine substitution appears to be within the experimental uncertainty and cannot be estimated accurately.

NMR spectroscopy

The \(^{11}\text{B} \text{ MAS NMR spectrum of the central and satellite transitions for the } \text{NaBH}_4\text{–NaBF}_4 (1 : 0.5, S2) \text{ sample before heating (Fig. 3a) contains two sets of resonances with centerbands at } \delta(^{11}\text{B}) = -1.7 \text{ ppm and } \delta(^{11}\text{B}) = -41.9 \text{ ppm, corresponding to the isotropic chemical shifts of NaBF}_4 \text{ and NaBH}_4, \text{ respectively.} \text{ The centerband from NaBH}_4 \text{ exhibits a linewidth of FWHM = 0.6 ppm in the } ^{1}\text{H decoupled } ^{11}\text{B MAS spectrum (Fig. 3a), whereas it is somewhat larger (FWHM = 3.2 ppm) for the NaBF}_4 \text{ centerband. Integration of all resonances from the central and satellite transitions for the two compounds gives a } \text{NaBH}_4\text{–NaBF}_4 \text{ intensity ratio of 1.0 : 0.37 which is in fair agreement with the reactant ratio used in the preparation of the sample } \text{NaBH}_4\text{–NaBF}_4 (1 : 0.5, S2). This result shows that no reaction occurs during ball milling of the } \text{NaBH}_4\text{–NaBF}_4 \text{ mixture, in agreement with the X-ray diffraction results.}\)
to Na$_2$B$_{12}$H$_{12}$ on the basis of the recently reported 11B chemical shift ($\delta^{(11B)} = -15.4$ ppm, 9.4 T) for this compound.44 The centerband resonance from Na$_2$B$_{12}$H$_{12}$ at $\delta^{(11B)} = -15.5$ ppm is slightly broader (FWHM = 3.4 ppm) than the centerband of NaBF$_4$ (FWHM = 3.1 ppm) and much broader than the centerband from NaBH$_4$ (FWHM = 0.7 ppm).

Examination of the intensities for the central-transition centerbands reveals relative 11B intensities of 0.26 : 0.72 : 0.02 for NaBF$_4$, Na$_2$B$_{12}$H$_{12}$, and NaBH$_4$, corresponding to the molar ratios of 0.26 : 0.06 : 0.02, respectively, indicating that Na$_2$B$_{12}$H$_{12}$ is the principal decomposition product of the S2-300 sample.

PXD data measured for sample S2-300 only reveal Bragg reflections from NaBF$_4$ and NaF (see Fig. S4, ESI†), which suggest that Na$_2$B$_{12}$H$_{12}$ and the small amount of NaBH$_4$ are X-ray amorphous, similar to amorphous LiBH$_4$ observed by 11B MAS NMR in a study of Y(BH$_4$)$_3$.$^\text{45}$

The above-mentioned results are in accordance with the 19F MAS NMR spectrum of the S2-300 sample (Fig. S5a, ESI†), which only includes resonances from NaBF$_4$, $\delta^{(19F)} = -159.2$ ppm (FWHM = 3.6 ppm) and NaF, $\delta^{(19F)} = -222.8$ ppm (FWHM = 7.9 ppm). This is apparent from a comparison of the spectrum in Fig. S5a (ESI†) with a similar 19F MAS NMR spectrum acquired for NaBF$_4$ (Fig. S5b, ESI†) and the chemical shift value, $\delta^{(19F)} = -221$ ppm, reported for NaF.$^\text{46}$ An analysis of the intensities for the partly overlapping centerbands and spinning sidebands in the 19F MAS NMR spectrum (Fig. S5a, ESI†) gives a 19F intensity ratio of 1.0 : 0.49 for NaBF$_4$ and NaF, corresponding to a sample composition with a NaBF$_4$: NaF molar ratio of 1.0 : 1.95.

The 23Na spectrum of the NaBH$_4$–NaBF$_4$ (1 : 0.5, S2) sample (Fig. 4a) includes a narrow central-transition centerband from NaBF$_4$ at $\delta^{(23Na)} = -8.4$ ppm (FWHM = 1.2 ppm) and a partly resolved second-order quadrupolar lineshape at about -20 ppm from NaBF$_4$ (Fig. 4c).41,47 23Na MAS NMR spectra of the central and satellite transitions for samples of NaBH$_4$ and NaBF$_4$ have been acquired (not shown), which allow determination of the 23Na isotropic chemical shifts and quadrupole coupling parameters (Table 2) from simulations and least-squares fitting to the spinning sidebands from the satellite transitions.$^\text{39}$ The quadrupole coupling parameters for NaBF$_4$ (Table 2) are in good agreement with earlier reported parameters ($Q_C = 1008.4$ kHz and $\eta_Q = 0.095$) determined from 23Na single-crystal NMR at 23 °C.$^\text{48}$ Moreover, the 23Na data determined for NaBH$_4$
agree well with the quadrupole coupling parameters reported recently from static-powder \(^{23}\)Na NMR experiments \((C_Q = 0.154 \pm 0.003 \text{ MHz}, \eta_Q = 0.10 \pm 0.05)\). The \(^{23}\)Na MAS NMR spectrum of the sample S2-300 (Fig. 4b) shows clearly that all NaBH\(_4\) has decomposed and that NaF (Fig. 4d) is the principal sodium-containing compound after the heat treatment. The absence of NaBH\(_4\) is in accord with the corresponding \(^{11}\)B MAS NMR spectrum (Fig. 3b) which only contains a very low-intensity peak from NaBH\(_4\) (2\% intensity). In addition, a centerband resonance at \(-17.4\) ppm is observed, which partly overlaps with the central transition from NaBF\(_4\). This resonance is assigned to X-ray amorphous Na\(_2\)B\(_{12}\)H\(_{12}\), following the observation of this phase in the \(^{11}\)B NMR spectrum (Fig. 3b, \(\delta(^{11}\text{B}) = -15.5\) ppm).

The sample S2 heat-treated at 275 °C (S2-275) has also been characterized by \(^{11}\)B, \(^{19}\)F, and \(^{23}\)Na MAS NMR. The \(^{23}\)Na MAS NMR spectrum (not shown) is dominated by the resonances from NaBH\(_4\) and NaBF\(_4\) in an approximate 2:1 ratio. Only a low-intensity resonance from NaF is observed, constituting 3.5\% of the total central-transition intensities, thereby demonstrating that only a minor part of the sample has decomposed by heat-treatment at 275 °C. This is also apparent from the \(^{11}\)B MAS NMR spectrum (Fig. 5a), which is dominated by the centerbands and spinning sidebands from NaBH\(_4\) and NaBF\(_4\). However, a very low-intensity (~0.004\%) centerband at \(\delta(^{11}\text{B}) = -15.5\) ppm from Na\(_2\)B\(_{12}\)H\(_{12}\) can also be identified. More interestingly, the \(^{19}\)F MAS NMR spectrum of the S2-275 sample (Fig. 5b) clearly reveals the presence of two new fluorine environments by the resonances at \(\delta(^{19}\text{F}) = -144.2\) ppm and \(-150.6\) ppm in addition to the dominating peak at \(\delta(^{19}\text{F}) = -159.2\) ppm from NaBF\(_4\). The new resonances are ascribed to fluorine that substitutes for hydrogen in the BH\(_4^-\) units of NaBH\(_4\). The SCF GIAO calculated isotropic \(^{19}\)F magnetic shielding tensor yields a value of 360.5 ppm (absolute shielding) for fluorine in BF\(_3\)H\(_2\), and a value of 376.8 ppm for fluorine in BF\(_2\)H\(_2\), corresponding to a positive shift of ca. 16 ppm (see Table S3, ESI†), similar to the one observed experimentally. In contrast, the calculated isotropic \(^{11}\)B isotropic shifts for BF\(_4^-\), BF\(_3\)H\(_2^-\) and BF\(_2\)H\(_2^-\) only exhibit a 3 ppm variation, which is within the experimental resolution, considering the linewidths of the centerband resonances. Thus, BF\(_4^-\), BF\(_3\)H\(_2^-\) and BF\(_2\)H\(_2^-\) cannot be distinguished experimentally under the \(^{11}\)B MAS NMR conditions used here.
Residual gas analysis

The gas released from samples of NaBH₄–NaBF₄ (1 : 0.1, S1) and NaBH₄–NaBF₄ (1 : 0.5, S2) was investigated by TPD-MS in the temperature range RT to 600 °C, see Fig. 6. NaBH₄ (R1) and NaBF₄ (R2) were also measured as references and a zoom (intensity × 10) of Fig. 6a is provided in Fig. S12 (ESI†). The TPD-MS of NaBH₄ reveals hydrogen release in two steps, at \(T = 476 \) and 519 °C, respectively. The TPD-MS spectrum of NaBF₄ shows release of BF₃ at 398 °C. A large H₂-signal with a peak temperature of 305 °C is observed for sample S2. Mass fragments of B₂H₆ and BF₃ were also detected in the same temperature range, see Fig. 6a. The integrals of the calibrated MS profiles can be used to estimate the relative amounts of the gases released. Sample NaBH₄–NaBF₄ (1 : 0.5, S2) releases ~92% H₂ together with minor fractions of B₂H₆ (~3%) and BF₃ (~5%).

For sample NaBH₄–NaBF₄ (1 : 0.1, S1) the relative amounts of H₂, B₂H₆, and BF₃ are 88, 4 and 8%, respectively. However, a major part of hydrogen is released at 483 °C while B₂H₆ and BF₃ are detected at 277 °C, see Fig. 6b. Interestingly, this hydrogen release is observed at reduced temperatures, ~50 °C below pristine NaBH₄. A MS signal corresponding to the mixed fluorine–hydrogen ion (BFH⁺, \(m/z = 31 \)) is also detected in both samples, which may indicate decomposition of B–H–F containing compounds in the samples.

Infrared spectra of the gases evolved during decomposition of the NaBH₄–NaBF₄ (1 : 0.1, S1) and NaBH₄–NaBF₄ (1 : 0.5, S2) samples were measured, see Fig. S10 and S11 (ESI†). The first IR signal appeared when the gas concentration in the cell was sufficient to reach the instrument sensitivity, which depends on the absorbance coefficient of each gas. The first signals for BF₃ and B₂H₆ were recorded at 90 °C, which means that desorption of these species started just below this temperature.

Thermal analysis

DSC and TGA measurements were conducted for NaBH₄–NaBF₄ (1 : 0.1, BM, S1), (1 : 0.5, BM, S2) and (1 : 0.5, HM, S3) and are compared with results for NaBH₄ (R1) and NaBF₄ (R2) (Fig. 7). The data were collected at temperatures from RT to above 450 °C (heating rate 5 °C min⁻¹) and the results are listed in Table S4 (ESI†).

The DSC profile of NaBH₄ (R1) shows endothermic signals at \(T = 484 \) and ~540 °C assigned to melting and decomposition. The corresponding TGA mass loss (28 wt%, observed) between 477 and 600 °C is larger than the gravimetric hydrogen content of NaBH₄, \(\rho_m = 10.7 \) wt% H₂, which may be due to melting and foaming of NaBH₄ during decomposition resulting in loss of...
material and possibly also decomposition of sodium hydride, NaH, and evaporation of sodium according to reaction scheme (1).

\[
\text{NaBH}_4(l) \rightarrow \text{Na}(l,g) + \text{B}(s) + 2\text{H}_2(g) \quad (2)
\]

The DSC profile of NaBF₄ (R2) reveals an endothermic signal at \(T = 246 \) °C assigned to the \(\alpha \)- to \(\alpha \)-NaBF₄ polymorphic transformation. A broad endothermic signal with peak intensity at \(T = 392 \) °C is associated with an observed mass loss of 33 wt% observed from 392 to 600 °C. Full decomposition of NaBF₄ to NaF and BF₃ according to reaction scheme (3) corresponds to a calculated mass loss of \(\Delta m/\Delta m(\text{BF}_3) = 61.8 \) wt%, which occurs at temperatures above the melting point, \(T_{mp}(\text{NaBF}_4) = 357 \) °C.

\[
\text{NaBF}_4(l) \rightarrow \text{NaF}(s) + \text{BF}_3(g) \quad (3)
\]

The DSC profile of NaBH₄–NaBF₄ (1:0.1, S1) shows weak endothermic signals at \(T = 263 \) and 278 °C, assigned to decomposition as observed by TPD-MS. A broad endothermic signal with peak intensity at \(T = 314 \) °C is associated with an observed mass loss of 2.3 wt% observed from 297 to 314 °C. At 321 and 468 °C a weak exothermic and a stronger endothermic event is recorded and assigned to the formation of \(\text{Na}_2\text{B}_{12}\text{H}_{12} \) and the melting of excess NaBH₄, respectively. For NaBH₄–NaBF₄ (1:0.5, BM, S2) and (1:0.5, HM, S3) endothermic signals are observed at \(T = 245 \), 278 and 297 °C for both samples and also at 314 °C for S3. The first endothermic event is assigned to the \(\alpha \)- to \(\alpha \)-NaBF₄ polymorphic transformation whereas the second event, at \(T = 278 \) °C, cannot directly be coupled with any reaction observed by \textit{in situ} SR-PXD involving crystalline reactants. The endothermic events at 297 and 314 °C are correlated with the mass loss observed in the temperature range 300 to 350 °C and a significant release of hydrogen detected by TPD-MS. A broad exothermic signal observed in the temperature range \(\sim 315 \) to \(\sim 350 \) °C with a peak value at \(T \approx 340 \) °C may be assigned to multiple reactions in the sample, e.g. formation of \(\text{Na}_2\text{B}_{12}\text{H}_{12} \).

The DSC and TGA profiles of the ball-milled and physically mixed samples of NaBH₄–NaBF₄ (1:0.5, BM, S2 and 1:0.5, HM, S3) are similar, but also reveal some differences, e.g. more solid-state chemical reactions in the HM sample in the temperature range \(\sim 315 \) to 350 °C are stronger, which lead to a smaller mass loss.

Sieverts measurements

The reversible hydrogen storage properties of NaBH₄–NaBF₄ (1:0.5, S2) were investigated using the Sieverts approach, see Fig. S13 and Table S5 (ESI†). During the first desorption NaBH₄–NaBF₄ (1:0.5, S2) releases 9.1 wt% \text{H}_2–\text{NaBH}_4 and 3.6 and 3.2 wt% \text{H}_2–\text{NaBH}_4 during the second and third desorption, respectively. Thus, the reversible capacity of the system NaBH₄–NaBF₄ appears to be improved as compared to NaBH₄ (R1) used as a reference. NaBH₄ (R1) releases 6.0 wt% \text{H}_2 during 105 h (the first 12 h are shown in Fig. S13, ESI†) corresponding to 56% of the theoretical hydrogen capacity \(\rho_{\text{th}}(\text{H}_2) = 10.7 \) wt%, assuming formation of NaH. Complete dehydrogenation requires higher temperatures due to the back pressure of \(p(\text{H}_2) = 1 \) bar used during desorption. Rehydrogenation was performed at \(T = 450 \) °C, \(p(\text{H}_2) \sim 130 \) bar for 24 h, but the second and third dehydrogenation only release 0.69 and 0.65 wt% \text{H}_2, i.e. \(\sim 6\% \) of the theoretical capacity. NaBH₄ is expected to absorb hydrogen at higher temperatures, 550 to 700 °C. Recent research shows that addition of nanoporous carbon facilities hydrogen uptake for bulk NaBH₄ significantly.

In order to address the possible effect of sodium fluoride, NaF, on the hydrogen storage properties a sample of NaBH₄–NaF (1:0.25, S6) was investigated. The first desorption of S6 resembles pure NaBH₄ with a total gas release of 4.9 wt% and 1.1 wt% in both second and third desorption, see Fig. S14 (ESI†). Thus, NaF appears to have a positive effect on hydrogen adsorption in NaBH₄ possibly by limiting the formation of foam and phase segregation and possibly also influenced by H–F exchange in NaBH₄.

The mechanism for hydrogen–fluorine exchange

Hydrogen release from metal borohydrides is strongly dependent on the gas pressure. Decomposition of NaBH₄ at \(p(\text{H}_2) \sim 0 \) in the TGA experiment resulted in loss of the sample possibly by ‘foaming’, whereas a slow loss of 6 wt% \text{H}_2 over 105 h was observed at \(p(\text{H}_2) \sim 1 \) bar using the Sieverts method. Furthermore, the results presented here suggest that utilization of sodium fluoride as an additive may eliminate foaming of the sample.

A possible reaction mechanism for hydrogen–fluorine exchange in the NaBH₄–NaBF₄ system may be suggested based on the results presented in this paper. NaBH₄–NaBF₄ samples generally reveal decreasing amounts of crystalline material in the temperature range \(\sim 250 \) to 310 °C, observed as a ‘gap’ in the diffraction data. In a few cases, weak diffraction from a new compound with the idealized composition, ‘NaBF₂H₂’, was observed, which may form according to reaction (4).

\[
\text{NaBH}_4(s) + \text{NaBF}_4(s) \rightarrow 2\text{NaBF}_2\text{H}_2(s) \quad (4)
\]

This new compound may account for the \(^{19}\text{F} \) NMR resonance observed at \(-144.2 \) ppm, shifted to higher frequency relative to NaBF₂ (\(\delta^{(19}\text{F}) = -159.2 \) ppm). This is further supported by the SCF GIAO calculations which predict a 16 ppm shift to a higher frequency for a BF₂H₂ unit relative to a BF₂⁻ site.

Reaction (4) may occur in the phase boundary between individual NaBH₄ and NaBF₄ particles. This hydrogen–fluorine exchange reaction (4) may be the first of multiple reactions, which lead to amorphous products. The product from (4) may react with excess sodium borohydride and form diborane, \(\text{B}_2\text{H}_6 \), and the stable and inert salt sodium fluoride according to \textit{in situ} SR-PXD data, see reaction (5).

\[
\text{NaBH}_4(s) + \text{NaBF}_2\text{H}_2(s) \rightarrow \text{B}_2\text{H}_6(g) + 2\text{NaF}(s) \quad (5)
\]

\[
2\text{NaBH}_4(s) + 5\text{B}_2\text{H}_6(g) \rightarrow 3\text{Na}_2\text{B}_{12}\text{H}_{12}(s) + 13\text{H}_2(g) \quad (6)
\]

The formed diborane may react with sodium borohydride and polymerize to the more stable \textit{closo}-boranes, e.g. \(\text{Na}_2\text{B}_{12}\text{H}_{12} \), see reaction (6). In fact, reactions (4)–(6) can be added to give the overall reaction (7).

\[
9.5\text{NaBH}_4(s) + 2.5\text{NaBF}_2\text{H}_2(s) \rightarrow 9\text{Na}_2\text{B}_{12}\text{H}_{12}(s) + 10\text{NaF}(s) + 13\text{H}_2(g) \quad (7)
\]

Reaction (7) corresponds to a hydrogen mass loss of \(\rho_{\text{th}}(\text{H}_2) = 4.31 \) wt% \text{H}_2 and tends to suggest that \(>21 \) mol% NaBF₄ in
samples of NaBH₄–NaBF₄ corresponds to exceed NaBF₄ and may lead to release of BF₃, as shown in eqn (3). The TGA results are in good agreement with reaction (7), i.e. sample NaBH₄–NaBF₄ (1 : 0.1, S1) releases half of this amount of gas, whereas S2 (0.666 : 0.334) releases slightly more. Interestingly, the major hydrogen release from NaBH₄–NaBF₄ (1 : 0.1, S1) is observed at significantly lower temperatures, ~50 °C, as compared to NaBH₄. A drawback for the NaBH₄–NaBF₄ composite is the formation of stable closo-boranes, e.g. Na₂B₁₂H₁₂, which are generally considered difficult to rehydrogenate.⁵⁶,⁵⁷

4 Conclusions

Direct observation of hydrogen–fluorine substitution in metal borohydrides was performed using in situ SR-PXD as a new Rock salt type compound with idealized composition NaBF₃. Combined use of solid-state ¹⁹F MAS NMR and DFT calculations confirms the formation of a BF₃H₂⁻ complex ion, which is also supported by combined use of FT-IR and DFT. This work shows that fluorine substituted borohydrides appear to be relatively unstable and tend to decompose to more stable compounds, e.g., the ionic compound NaF and the covalent, molecular BF₃ gas or amorphous products such as closo-boranes, e.g. Na₂B₁₂H₁₂. H–F exchange appears to be facilitated by less stable fluorine containing reactants (i.e. NaBF₄) as compared to the more stable reaction products formed during decomposition. The NaBH₄–NaBF₄ composite decomposes at lower temperatures (T ~ 300 °C) compared to NaBH₄ (T ~ 476 °C), preserves 30% of the hydrogen storage capacity after three hydrogen release and uptake cycles compared to 6% for NaBH₄ and more than 50% using prolonged absorption time. Thus, this work demonstrates that hydride–fluoride exchange in hydrogen storage materials may significantly change the physical properties. H–F exchange may facilitate hydrogen uptake, prevent foaming, phase segregation and loss of material during release of hydrogen by thermolysis. Furthermore, lightweight fluorine-containing materials are of increasing interest for other energy-related purposes, such as development of new types of batteries.

Acknowledgements

The authors would like to acknowledge funding for this research from the European Community’s Seventh Framework Program FP7/2007–2013 under grant agreement No 226943-FLYHY. The Danish Research Council for Natural Sciences (Danscatt) and the Swiss National Science Foundation are also thanked for financial support. Moreover, the work was supported by the Danish National Research Foundation (Centre for Materials Crystallography, DNRF93), the Danish Strategic Research Council (the project Hy-FillFast) and the Carlsberg Foundation. The access to beam time at the MAX-II synchrotron, Lund, Sweden in the research laboratory MAX-lab and at the Swiss-Norwegian Beam Lines (SNBL), European Synchrotron Radiation Facility (ESRF), Grenoble, France is gratefully acknowledged. Finally, we thank the Danish Natural Science Research Council, the Danish Technical Science Research Council, and the Carlsberg Foundation for funding to the Instrument Centre for Solid-State NMR Spectroscopy, Aarhus University.

Notes and references

1 H. W. Li, Y. Yan, S. Orimo, A. Züttel and C. M. Jensen, Energies, 2011, 4, 185–214.
2 S. I. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel and C. M. Jensen, Chem. Rev., 2007, 107, 4111–4132.

Published on 05 September 2013. Downloaded by Aarhus University Library on 10/10/2013 10:12:48.
Published on 05 September 2013. Downloaded by Aarhus University Library on 10/10/2013 10:12:48.