gRaphical modelling software in R – status (and future?)

www.r-project.org/gR

Claus Dethlefsen,
Aalborg Hospital, Aarhus University Hospital

Søren Højsgaard
Aarhus University

Steffen Lauritzen
University of Oxford
The gR-initiative - background

- Graphical models in various forms have been around for 25+ years.
- Various pieces of software (commercial and non-commercial) have been developed.

Typical for these programs:
- Independent stand-alone programs.
- Developed and maintained by a small group.
- Code is not open source.
- Each package has its own script language and GUI.
- Packages usually only run on a single platform.
The gR-initiative - history

- The gR-initiative: Integrate graphical model software into general, multi-platform extendable software environment – R.

- Background: A kick-off meeting in Vienna, 2002
- A graphical model session at DSC2003 in Vienna
- A small grant from the Danish Natural Science Research Council.
- Described in ”gRaphical Models in R: A new initiative within the R project” , (S.L. Lauritzen, R News 2(3), 39)

Time to look at how far we have made it (briefly):
- Several gRaphical modelling R-packages (on CRAN)
- A common platform for graphical modelling software (on CRAN)
- The pace has gone down...
Outline

- Graphical models and existing software
- gR-initiative, organisation and status
- Core packages: gRbase, dynamicGraph, giRaph
- Examples of ”end-user-packages”
 - BRUGS
 - mimR
- Winding up – and future work
Graphical models in short

Graph
Sets of nodes and edges (directed undirected, both...)

Graphical modelling
Multivariate data, exploit conditional independence properties for eg. modelling, computations, interpretation and display.

Examples
Bayesian networks, log-linear models, mixed interaction models, covariance selection models, block-recursive graphical models, BUGS models...
Example: log-linear models

- 6-dim contingency table
- Write cell probabilities as
 \[p(abdefg) = \psi_1(aef) \psi_2(adf) \psi_3(bd)\psi_4(bg) \]
- Factorisation implies conditional independencies (depicted in graph)
- Graph shows model is decomposable, implies closed form MLE
Existing Graphical Model Software – Rough characteristics

Examples: CoCo, Digrum, MIM, TETRAD, Bugs

- Independent stand-alone programs.
- Developed and maintained by a small group.
- Code may not be open source.
- Each package has its own script language and GUI.
- Packages usually only run on a single platform.

Consequently,

- New packages start from ’scratch’.
The gR initiative – aims

- Ambitious goal: Make graphical modelling possible in R - a general, multi-platform extendable software environment.
- Moreover, ease the effort of creating future packages.
 - Provide a library of efficient algorithms for computation with graphs.
 - Provide a graphical user interface easily adapted to future packages.
- Ease the use of different types of graphical models
 - Set standards for user interface and representation of data and models.
 - Develop graphical model packages for end users.

- Modest goal: Make existing graphical modelling software available to use from within R
The gR initiative - organisation

- A friendly anarchy of developers.
- gR core group: Develops core packages and sets standards.
- gR developers: Developers of packages for specific purposes. Uses gR ”core products” and other R packages.
- gR end-users: Analyses data with the developed packages using a unified user interface.
La Rocca, Badsberg, Dethlefsen (2006)

Marchetti, Drton (2003)

Drton, Perlman (2004)

Højsgaard (2004)

Badsberg (2001)

SIN

mimR

Badsberg (2006)

Dethlefsen, Højsgaard (2005)

Klein, Keiding, Kreiner (1995)

Spirtes, Glymour, Scheines (1993)

CRAN Task View ”gR”
> install.packages(”ctv”)
> library(ctv)
> install.views(”gR”)

Badsberg (2001)

Bottcher, Dethlefsen (2003)

CoCo

TETRAD

BRugs

gR

dynamic

Graph

La Rocca, Badsberg, Dethlefsen (2006)
gR core packages

ручк gRbase: Defines data structure and model structure; sets standards for how to combine (data, model) with inference engines.

ручк dynamicGraph: implementation of an interactive graphical user interface for manipulating graphs, using tcl/tk.

ручк giRaph: representation of graphs and computation with graphs.
gmData (graphical meta data). A common class for representing data. No matter the actual representation of data, the important characteristics are contained in a gmData object.

Data are not always needed (some model properties do not depend on data, e.g. dimension).
gRbase: gmData class example

```r
> data(HairEyeColor)  # A Table

> as.gmData(HairEyeColor)

<table>
<thead>
<tr>
<th>varNames</th>
<th>shortNames</th>
<th>varTypes</th>
<th>nLevels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hair</td>
<td>H</td>
<td>Discrete</td>
<td>4</td>
</tr>
<tr>
<td>Eye</td>
<td>E</td>
<td>Discrete</td>
<td>4</td>
</tr>
<tr>
<td>Sex</td>
<td>S</td>
<td>Discrete</td>
<td>2</td>
</tr>
</tbody>
</table>

To see the values of the factors use the 'valueLabels' function
To see the data use the 'observations' function
gRbase: gModel class and fitting engines

- Contains information on generators of the model (model formula) and metadata.
- Specific types of models inherit from this class.

Example with hierarchical log-linear models (hllm)

```r
data(reinis)
reinis <- as.gmData(reinis)

m1 <- hllm(~.., reinis)
fit(m1,engine="loglm")

m2 <- hllm(~A*C+E+B*C+B*F+A*D*E, reinis)
dynamic.Graph(m2)
```
Package writers can use pre-defined, customizable functions for

- Displaying vertices and edges (different types)
- Adding functionality in context menus (right-clicking) and main menus
- Defining ”views” of a model (different types of graphs) that are linked together
- Defining several ”models” for comparison

End-users get a homogeneous user interface
giRaph

- Provides functionality for representation of (quite general) mathematical graphs
- Possible to work with graphs independent of their representations
- Change between representations
- Interface with dynamicGraph
giRaph

- **generalGraph**
  
  a-b-c, a-b, b->c, b->c, a<>a

- **incidenceList**

- **incidenceMatrix**

- **generalGraph**

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **incidenceMatrix**

- **multiGraph**

  b <- {}
  -- {a}
  -> {c,c}
  c <- {b,b}
  -- {}
  -> {}

- **adjacencyList**

- **adjacencyMatrix**

- **simpleGraph**

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Raph example

> IL <- new("incidenceList", E=list(u(1,2), d(1,3), u(3), d(2,5)), V=1:5)

> G <- new("anyGraph", incidenceList=IL)

> G <- G + u(3,1) # insert undirected edge from 3 to 1

> Gs <- as(G, "simpleGraph")

... An object of class "incidenceList"

V={X1,X2,X3,X4,X5}

E={
  X1--X2
  X1--X3
  X2-->X5
}

> adjacencyMatrix(Gs)

> incidenceMatrix(Gs)

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>X2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>X5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X1</th>
<th>X2</th>
<th>X3</th>
<th>X4</th>
<th>X5</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1,]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[2,]</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>[3,]</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Docs on gRcore packages

- **gRbase:**

- **dynamicGraph:**
  Unpublished, status unknown

- **giRaph:**
  Unpublished, BUT manuscript on its way.
Specific package 1: BRUGS

- Bayesian approach,
- Joint model specified as product of conditionals,
- All parameters are explicit

Example:
- Weekly measurements of body weight of 30 rats for 5 weeks.
- Plot suggest downward curvature
RATS model

Random regression model

\[ Y_{ij} \sim \text{Normal}(\alpha_i + \beta_i(x_j - \bar{x}), \tau) \]
\[ \alpha_i \sim \text{Normal}(\alpha_c, \tau_\alpha) \]
\[ \beta_i \sim \text{Normal}(\beta_c, \tau_\beta) \]
model {
  for( i in 1 : N ) {
    for( j in 1 : T ) {
      Y[i , j] ~ dnorm(mu[i , j],tau.c)
    }
    alpha[i] ~ dnorm(alpha.c,alpha.tau)
    beta[i] ~ dnorm(beta.c,beta.tau)
  }
  tau.c ~ dgamma(0.001,0.001)
  sigma <- 1 / sqrt(tau.c)
  alpha.c ~ dnorm(0.0,1.0E-6)
  alpha.tau ~ dgamma(0.001,0.001)
  beta.c ~ dnorm(0.0,1.0E-6)
  beta.tau ~ dgamma(0.001,0.001)
  alpha0 <- alpha.c - xbar * beta.c
}
## some usual steps (like clicking in WinBUGS):
modelCheck("ratsmodel.txt")          # check model file
modelData("ratsdata.txt")            # read data file
modelCompile(numChains=2)            # compile model with 2 chains
modelInits(rep("ratsinits.txt", 2))  # read init data file
modelUpdate(1000)                    # burn in
samplesSet(c("alpha0", "alpha"))     # alpha0 and alpha monitored
modelUpdate(1000)                    # 1000 more iterations ....
samplesStats("*")                    # the summarized results

## some plots
samplesHistory("*", mfrow = c(4, 2)) # plot the chain,
samplesDensity("alpha")              # plot the densities,
samplesBgr("alpha[1:6]")             # plot the bgr statistics, and
samplesAutoC("alpha[1:6]", 1)        # plot autocorrelations of chain
samplesDensity("alpha")              # plot the densities,
Output directly into R

```r
> samplesStats("*")

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th>sd</th>
<th>MC_error</th>
<th>val2.5pc</th>
<th>median</th>
<th>val97.5pc</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha[1]</td>
<td>239.9</td>
<td>2.684</td>
<td>0.06498</td>
<td>234.80</td>
<td>240.0</td>
<td>245.1</td>
<td>1001</td>
<td>2000</td>
</tr>
<tr>
<td>alpha[2]</td>
<td>247.8</td>
<td>2.733</td>
<td>0.05468</td>
<td>242.50</td>
<td>247.9</td>
<td>253.1</td>
<td>1001</td>
<td>2000</td>
</tr>
<tr>
<td>alpha[3]</td>
<td>252.4</td>
<td>2.653</td>
<td>0.05837</td>
<td>247.10</td>
<td>252.4</td>
<td>257.4</td>
<td>1001</td>
<td>2000</td>
</tr>
<tr>
<td>alpha[4]</td>
<td>232.6</td>
<td>2.641</td>
<td>0.06602</td>
<td>227.40</td>
<td>232.6</td>
<td>237.7</td>
<td>1001</td>
<td>2000</td>
</tr>
<tr>
<td>alpha[5]</td>
<td>231.5</td>
<td>2.696</td>
<td>0.05603</td>
<td>226.30</td>
<td>231.5</td>
<td>236.9</td>
<td>1001</td>
<td>2000</td>
</tr>
<tr>
<td>alpha[6]</td>
<td>249.7</td>
<td>2.689</td>
<td>0.05530</td>
<td>244.40</td>
<td>249.7</td>
<td>254.8</td>
<td>1001</td>
<td>2000</td>
</tr>
<tr>
<td>..........</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
<td>......</td>
</tr>
<tr>
<td>alpha[30]</td>
<td>241.4</td>
<td>2.687</td>
<td>0.05222</td>
<td>236.00</td>
<td>241.4</td>
<td>246.8</td>
<td>1001</td>
<td>2000</td>
</tr>
<tr>
<td>alpha0</td>
<td>106.5</td>
<td>3.657</td>
<td>0.10590</td>
<td>99.19</td>
<td>106.5</td>
<td>113.9</td>
<td>1001</td>
<td>2000</td>
</tr>
</tbody>
</table>
```
Specific package 2: mimR

- Frequentist approach
- Joint specification of model (mixed interaction models, e.g. log-linear models and covariance selection models.)
- All parameters are implicit

Example: Mathematics marks data
- Mathmark data: 88 students marks on (a)lgebra, a(n)alysis, (m)echanics, (v)ectors and (s)tatistics.
Concentration matrix: Inverse covariance matrix.
A zero concentration implies conditional independence

**Concentrations (×1000):**

<table>
<thead>
<tr>
<th></th>
<th>mechanics</th>
<th>vectors</th>
<th>algebra</th>
<th>analysis</th>
<th>statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>mechanics</td>
<td>5.24</td>
<td>-2.44</td>
<td>-2.74</td>
<td>0.01</td>
<td>-0.14</td>
</tr>
<tr>
<td>vectors</td>
<td>-2.44</td>
<td>10.43</td>
<td>-4.71</td>
<td>-0.79</td>
<td>-0.17</td>
</tr>
<tr>
<td>algebra</td>
<td>-2.74</td>
<td>-4.71</td>
<td>26.95</td>
<td>-7.05</td>
<td>-4.70</td>
</tr>
<tr>
<td>analysis</td>
<td>0.01</td>
<td>-0.79</td>
<td>-7.05</td>
<td>9.88</td>
<td>-2.02</td>
</tr>
<tr>
<td>statistics</td>
<td>-0.14</td>
<td>-0.17</td>
<td>-4.70</td>
<td>-2.02</td>
<td>6.45</td>
</tr>
</tbody>
</table>
Mathmark model

```r
> data(math)
> math <- as.gmData(math)
> m1 <- mim("..", data=math)
> m2 <- stepwise(m1)
> m2
> -2logL: 3391.021 DF: 4
> display(m2)
> round(1000*solve(fitted(m2)$quadratic),2)
```

```
 me ve al an st
me 5.30 -2.47 -2.91 0.00 0.00
ve -2.47 10.46 -5.67 0.00 0.00
al -2.91 -5.67 28.82 -7.64 -4.99
an 0.00 0.00 -7.64 9.93 -2.06
st 0.00 0.00 -4.99 -2.06 6.51
```
Winding up – future work

- Graphical modelling packages available from within R and on CRAN. Good!
- Packages do not use gRbase-’architecture’ (except for mimR). Bad ! (?)
- Biggest virtue is probably that R is used as a common basis for getting data into and results out from the packages with. Good !
- Momentum has gone down. Bad !
- Contributions welcome…
What have we learned?

- Things have evolved around us. The Rgraphviz and graph packages are now available (on all platforms).
- Hence the dynamicGraph (and giRaph?) packages might be ‘redundant’ in the future.
- We should perhaps have focused more on the gRbase package itself – and on getting that part integrated with the graphical modelling packages.
People involved in gR

**gR Core**
- Claus Dethlefsen, Aalborg Hospital, Aarhus University Hospital
- Søren Højsgaard, Aarhus University
- Jens Henrik Badsberg, Statens Serum Institut
- Luca La Rocca, University of Modena and Reggio Emilia

**Other gR people**
- Susanne G. Bøttcher, Aalborg University
- Peter Dalgaard, University of Copenhagen
- David Edwards, Novo Nordisk A/S
- Poul Svante Eriksen, Aalborg University
- Peter Green, University of Bristol
- Anders Rhod Gregersen, Aalborg University
- Svend Kreiner, University of Copenhagen
- Steffen Lilholt Lauritzen, University of Oxford
- Giovanni Marchetti, University of Florence
- Duncan Murdoch, University of Western Ontario
- Andrew Thomas, University of Helsinki

The Danish activities of the gR initiative was supported by the Danish Natural Science Research Council.
References

- Dethlefsen, C. and Højsgaard, S (2005)
Where to go in June:

- Biometric Society, Nordic and Baltic Regions joint conference in Denmark, June 6-8, 2007

**Topics**

- Statistics in Agriculture and Veterinary Science
- Bioinformatics and Genetics
- Clinical Trials and Drug Development
- Epidemiology and Statistics in Health Care
- Statistics in Forestry, Wildlife and the Environment
- Advances in Theory and Computational Methods
- Other topics
Also different…

- SASweave – see http://www.cs.uiowa.edu/~rlenth/SASweave/
- Not unlike Sweave
- Allows for SAS, R, and Latex in same document
- Available on Window/Linux platforms