Time’s Up!
Dating the Minoan eruption of Santorini

Acts of the Minoan Eruption Chronology Workshop,
Sandbjerg November 2007
initiated by
Jan Heinemeier & Walter L. Friedrich

Edited by
David A. Warburton
Contents

9 Scientific & technical organizing committee

10 List of contributors

13 Editor's preface
 David A. Warburton

15 Bibliography

53 General introduction
 David A. Warburton

56 The Minoan eruption of Santorini radiocarbon dated to 1613 ± 13 BC
 Walter L. Friedrich & Jan Heinemeier

65 Part I: Evidence, geology, archaeology & chronology

67 Volcanic chronology of Santorini
 Alexander R. McBirney

73 The eruption within the debate about the date
 Floyd W. McCoy

91 The effects of the Minoan eruption
 Walter L. Friedrich & Nikolaos Sigalas

101 Evidence from Pseira for the Santorini eruption
 Philip P. Betancourt

107 The impact of the Minoan eruption of Santorini on Mochlos
 Jeffrey S. Soles

117 Papadiokambos: new evidence for the impact of the Theran eruption
 Thomas M. Brogan & Chrysa Sofianou

125 The basis for the Egyptian dates
 Rolf Krauss & David A. Warburton

145 How uncertain is Mesopotamian chronology?
 Hermann Hunger
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>153</td>
<td>Part II: Debate: typology, chronology, methodology</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Thera, Hathepsut, and the Keftiu: crisis and response</td>
<td>J. Alexander MacGillivray</td>
</tr>
<tr>
<td>171</td>
<td>The Thera eruption and Egypt: pumice, texts and chronology</td>
<td>Karen Polinger Foster, Johannes H. Sterba, Georg Steinhauser & Max Bichler</td>
</tr>
<tr>
<td>181</td>
<td>The date of the Late Bronze Age eruption of Santorini</td>
<td>Peter Warren</td>
</tr>
<tr>
<td>187</td>
<td>Aegean-Egyptian synchronisms and radiocarbon chronology</td>
<td>Felix Höflmayer</td>
</tr>
<tr>
<td>197</td>
<td>The state of the debate about the date of the Theran eruption</td>
<td>Malcolm H. Wiener</td>
</tr>
<tr>
<td>207</td>
<td>Beyond the Santorini eruption</td>
<td>Sturt W. Manning</td>
</tr>
<tr>
<td>227</td>
<td>The dating of the earlier Late Minoan IA period</td>
<td>Sturt W. Manning & Christopher Bronk Ramsey</td>
</tr>
<tr>
<td>247</td>
<td>Chronological conundrums: Cypriot and Levantine imports from Thera</td>
<td>Robert Merrillees</td>
</tr>
<tr>
<td>253</td>
<td>The chronology of Tell el-ε-Ajjul, Gaza</td>
<td>Peter M. Fischer</td>
</tr>
<tr>
<td>267</td>
<td>An update on the chronological value of Minoica in the Levant and Cyprus</td>
<td>Annette Højen Sørensen</td>
</tr>
<tr>
<td>275</td>
<td>14C and 10Be around 1650 cal BC</td>
<td>Raimund Muscheler</td>
</tr>
<tr>
<td>285</td>
<td>The Minoan eruption of Santorini radiocarbon dated</td>
<td>Jan Heinemeier, Walter L. Friedrich, Bernd Kromer & Christopher Bronk Ramsey</td>
</tr>
<tr>
<td>295</td>
<td>Epilogue</td>
<td>David A. Warburton</td>
</tr>
</tbody>
</table>
The Minoan eruption of Santorini radiocarbon dated by an olive tree buried by the eruption

Jan Heinemeier, Walter L. Friedrich, Bernd Kromer & Christopher Bronk Ramsey

Abstract

In 2006 we published a radiocarbon dating, 1613 BC, for the Minoan eruption on Santorini with an unparalleled precision of ±13 calendar years. It was based on the unique find in the caldera wall of Santorini of a branch of an olive tree that had been buried and preserved in an upright, life, position by the pumice of the eruption. 72 tree rings were identified by X-ray tomography, and the high precision was achieved by wiggle matching the 14C results of the time series of four contiguous sections of tree rings to the radiocarbon calibration curve. Since the trees were growing at an altitude of 150 m above sea level and at a distance of more than 2.5 km from the active volcanic zone on Santorini, it is unlikely that the radiocarbon values published in 2006 could have been affected by old CO2. Because of the clear association of the tree and its outermost growth ring with the geological/archaeological event of the eruption, the date represents the best combination of directness and precision in any attempt so far of a science based chronology of the Minoan eruption.

While in broad agreement with other science dating attempts, there are some who claim that it is completely irreconcilable with the traditional archaeological dates of the late 16th century BC, or later, based on cultural linkage (pottery typology) and Egyptian Chronology. To resolve the conflict, we need to take a careful look at the implicit and explicit underlying assumptions in the two methods. As we do not possess the expertise to evaluate the results of the archaeological approach, this paper will deal with the details of the find of the olive branch and its radiocarbon dating by wiggle matching as well as a balanced assessment of the possible sources of error.

Introduction

Thirty years ago, all the radiocarbon age determinations of material from Akrotiri were single measurements of short-lived material such as seeds. For example, the radiocarbon laboratory in Copenhagen dated seeds of ‘faba’ beans (Lathyrus climenum) and lentils (Lens culinaris Medik.) that were found in jars in the excavations at Akrotiri. However, when they were calibrated using the calibration curve of that time, the original precision of the measurement was lost owing to a flat section in the radiocarbon calibration curve. The calibrated results were around 1645 BC, which at that time corresponded to the acid signal found in the DYE3 ice core in Greenland.

Since then, things have changed. Today we use the IntCal04 calibration curve that has many improvements. However, people have objected that the curve has been smoothed. Radiocarbon measurements on recent trees performed in different laboratories contributed to the new calibration curve (Fig. 1). They give a fairly good agreement among the measured samples. IntCal04 shows that errors of individual calibration measurements range from ±12-15 years on samples averaging 10 tree rings. No difference can be detected between the regions whence the trees come, even at high-precision error levels. Furthermore, there is no evidence of anomalous atmospheric 14C levels in the Aegean.

Manning and his co-workers have dated samples which consist almost exclusively of short-lived or-

1 Friedrich et al. 2006.
3 Friedrich et al. 1990.
ganic materials from the Akrotiri excavations and other localities in the Aegean. Their samples were measured in radiocarbon laboratories at Vienna, Oxford, and Heidelberg. When the samples were calibrated in combination with stratigraphic information, the Minoan eruption was placed in the range 1660-1613 BC with 95.4% probability. However, the most precise and direct date was derived from a branch which is part of the remains of an olive tree that was buried alive, in life position, in the pumice of the Minoan eruption on Santorini as shown in Figs 2-4 and discussed in Friedrich & Heinemeier, this volume.

Radiocarbon measurements of the olive branch

Using 3D X-ray tomography it was possible to count 72 year rings (cf. Frontispiece facing title

\[\text{Manning et al. 2006.} \]
The Minoan eruption of Santorini radiocarbon dated by an olive tree

They were sampled in four groups, and the mean radiocarbon age of each group of rings could be fitted to the IntCal04 calibration curve. A few test samples were run at the AMS 14C Dating Centre in Aarhus (Fig. 5), showing that the dates lay within the range of those proposed for the Minoan eruption. The final, high-precision radiocarbon measurements were performed at the conventional radiocarbon laboratory in Heidelberg (Fig. 6) that had earlier measured the relevant section of the calibration curve (Fig. 1). The radiocarbon ages of the four year-ring groups were wiggle matched to the calibration curve IntCal04. The high precision of the calibrated date of the Minoan eruption was obtained due to the fact that we knew the number of tree rings in each group and thus the time gap between the central ring in each group. The option, ‘defined sequence’ of the Oxcal 3.0 programme was used with these known gaps, resulting in the final calibrated age range 1627-1600 BC (1613 ±13 BC) with a probability of 95%. Several tests were run in order to demonstrate the robustness of the measurements with regard to uncertainties in ring counting or growth irregularities of olive trees. Thus, even when we use the option, ‘variable sequence’ to take an uncertainty of 50% in the ring count into account, these limits are increased by only a decade (cf. Frontispiece, facing title page, bottom).

Fig. 3. The first look at the branch of the first tree, while still embedded in the pumice of the Minoan eruption.

Fig. 4. A polished section of the branch. Growth rings are barely traceable.

Fig. 5. AMS accelerator at the Department of Physics, Aarhus University, Denmark, where the first samples were measured.

Fig. 6. Bernd Kromer and his Radiocarbon Laboratory in Heidelberg, where the final measurements were made.
To test the accuracy of the conventionally measured radiocarbon age of the last tree ring section, we have compared this to earlier measurements. Thus all of the other measurements for the eruption and the last tree ring of this sample agree (they pass a Ward and Wilson chi squared test: df=27 T=32.6 cf. 5% 39.9). The relevant input dataset is:

```r
R_Combine()
{
R_Date( "OxA-11817", 3348, 31);
R_Date( "OxA-11818", 3367, 33);
R_Date( "OxA-11820", 3400, 31);
R_Date( "OxA-11869", 3336, 34);
R_Date( "OxA-12170", 3336, 28);
R_Date( "OxA-12171", 3372, 28);
R_Date( "OxA-12175", 3318, 28);
R_Date( "OxA-12172", 3321, 32);
R_Date( "OxA-1552", 3390, 65);
R_Date( "OxA-1555", 3245, 65);
R_Date( "OxA-1548", 3335, 60);
R_Date( "OxA-1549", 3460, 80);
R_Date( "OxA-1550", 3395, 65);
R_Date( "OxA-1553", 3340, 65);
R_Date( "OxA-1554", 3280, 65);
R_Date( "OxA-1556", 3415, 70);
R_Date("Hd-5048/5519", 3490, 80);
R_Date("Hd-6059/7967", 3140, 70);
R_Date("K-5352", 3310, 65);
R_Date("K-5353", 3430, 90);
R_Date("K-3228", 3340, 55);
R_Date("K-4255", 3380, 60);
R_Date("VERA-2756", 3317, 28);
R_Date("VERA-2757", 3315, 31);
R_Date("VERA-2758", 3339, 28);
R_Date("VERA-2758R", 3390, 32);
R_Date("VERA-2758R", 3322, 33);
// Friedrich et al
R_Date("Hd-23588/24402", 3331, 10 );
};
```

This suggests that all of the measurements for the time of the eruption (presumably in different areas of the island) give the same results within the measurement precision.

If there is a local environmental effect that “explains” the radiocarbon results for a c. 1520 BC eruption, it is clear that it cannot really be a local vent or something which varies rapidly in the time leading up to the eruption – this is partly shown by good agreement above and also by the fact that there are no obvious anomalies in the sequence from the olive sample (Fig. 7).

One could consider whether there might be a much more widespread local reservoir offset, fairly consistent over the life of the wood measured. However, given the consistency of the measurements with the calibration curve this would indeed have to be very constant, and there is no particular reason why there should be such an effect in this region, solely for this period.

We have considered the effect of allowing some variation in the local CO₂ reservoir by using a Delta-R correction with a mean of zero in the calibration. No appreciable effect is seen for an uncertainty of 20 years (see Fig. 8). Essentially, one has to make the uncertainty on any long term local reservoir average as large as 40 years before one sees any significant probability of an eruption date near 1500 BC, and then only because this allows (at

Short lived material from Manning et al. 2006a.
close to 2 standard deviations) a consistent offset of 70–80 years.

Finally there is the question of the validity of the calibration curve in this period. Again, the results from Santorini presented here as well as sequences from Miletos and Gordion\(^9\) show that wood growing in this period mirrors what is shown in the IntCal curve for this period – so there is no really good evidence that the calibration curve itself is wrong. Further, in many ways, the dating of the olive branch is less sensitive to deviations in the calibration curve than the measurements on the short-lived material from Santorini since the latter could be influenced by a hypothetical very short unperceived anomaly in the curve – something which would not apply to the olive branch.

The leaves

In the fine dust of the exposed precursor layer of the Minoan eruption, a high concentration of olive leaves was found under each tree, but none in the area between the trees (Friedrich and Heinemeier, this volume), indicating that both trees were alive when buried by the eruption. For the purpose of supplementary radiocarbon dating, we have made several attempts to collect some of these leaves, but while their structure seems perfectly preserved \(\text{in situ}\), the material turns into dust when handled, and no organic material remains for dating. The same effect is seen in the roots found under both trees.

However, even if it had been possible to make a high-precision radiocarbon dating of the leaves, the results would not contribute to increase the precision of the determination of the eruption date, since they are single samples limited to a single year of life. It is widely assumed that material which can be dated to a single year (grain, leaves, pits or stones) is more reliable for giving an indication of the date of the deposit. However, in contrast to the

sequences of tree-rings sampled from the branch, organic materials with a life span of a single year cannot offer the necessary data to arrive at a precisely calibrated date, since the calibration curve has wiggles and is thus not a straight line. Thus – were we to achieve what has hitherto proved impossible – we know in advance that any potential future leaf samples would show the same ambiguous calibrated dates, with peaks separated by troughs decades apart, exactly as do the many similarly short-lived samples previously dated from the Akrotiri excavation (see also the example of no wiggle matching in Fig. 9).

Discussions and questions

The radiocarbon age of the olive branch from Santorini has inspired lively discussions among scholars. Two main issues were debated: 1) was the tree alive when it was buried by the ashes of the Minoan Eruption? 2) Is it likely that old volcanic CO$_2$ might have influenced the result of the radiocarbon dating? Concerning the first issue, we are sure that the tree was alive, as olive leaves were found on the ground at the growth place of the trees, embedded in a 4 cm thick layer of fine volcanic dust. The leaves are found within the layer – not under it, which means that a hot cloud of volcanic dust surrounded the olive trees and caused the leaves to desiccate and fall. We found the leaves only in the immediate vicinity under each tree indicating that the trees cannot have been dead.

Were the olive trees affected by old CO$_2$?

Since the olive trees grew on a volcanic island, it is also relevant to consider the question of whether the radiocarbon dates might have been influenced by old CO$_2$ from the magma chamber. By studying the geological situation of that time, the morphology and the distance of the localities from which the radiocarbon samples were taken in comparison to the emanation points of old CO$_2$, one can answer this question. Concerning the shape and morphology of the ring island in the Bronze Age we have detailed knowledge from fieldwork through the past three decades and the reconstructions presented by various geologists are quite similar. According to these reconstructions, the sites of the Akrotiri and the nearby Potamos excavations as well as the growth place of the olive trees lie at a safe distance from any potential influence of old CO$_2$. Furthermore, the same sites show direct evidence of a long period of volcanic inactivity. At Akrotiri and Potamos, the Minoan pumice was deposited directly on top of the Cape-Riva ignimbrite – from the last major eruption prior to the Minoan – which has been dated at 21,000 calendar years BP. (See also Fig. 10).

Studies in Germany (Laacher See) and on Santorini (Palea Kameni) have shown that plants grow-

The Minoan eruption of Santorini radiocarbon dated by an olive tree

ing close to an emanation source of old CO$_2$, falsely give old radiocarbon ages.12 However, these studies also show that the effect is locally restricted, in agreement with theoretical calculations of atmospheric mixing. Since (a) the distance between the growth-site of the olive tree and the nearest point in the active volcanic zone is about 3.5 kilometres; (b) the site is about 5 kilometres away from the crater of the Minoan eruption; and (c) the tree was found on top of the pre-eruption caldera rim and thus in an area with excellent air circulation – ensuring both horizontal and vertical atmospheric mixing – it is unlikely that contamination with old CO$_2$ could have affected the olive tree. Last but not least, neither faults nor old fumarolic fields nor sites with iron oxide deposits were observed in the neighbourhood of the tree. Thus the tree rings must be considered a reliable record of atmospheric CO$_2$ in its seven decades of life prior to the eruption.

The Minoan eruption was one of the most violent in human history. Its unusual strength was the result of a long period of inactivity prior to the eruption. During the past twenty thousand years, all volcanic activity on Santorini, including emanation of CO$_2$, has been confined to a structurally weak tectonic zone running northeast-southwest from the volcanoes of the Christiana Islands in the

12 Bruns et al. 1980.
southwest, over the volcanic Kameni Islands to the Kolumbos volcano. Both the crater of the Minoan eruption and the CO$_2$ sources on the Kolumbos and Kameni fault lines are located within this zone (Friedrich & Heinemeier this volume, p. 57, Fig. 3).

The above mentioned long period of inactivity can be demonstrated directly at the growth-site of the olive tree and in the Akrotiri excavation and the site in Potamos valley (Fig. 10). The Akrotiri radiocarbon samples studied were obtained from this excavation.

The location where the radiocarbon dated olive-tree was buried alive by the pumice of the eruption is on a steep caldera wall, 150 metres above sea level. It was found in situ with roots and branches, and with leaves lying at the foot of the tree. The thick soil, consisting of deeply weathered volcanic tuff, in which it grew, testifies to a long period, probably several millennia, of volcanic inactivity prior to the eruption. Since the form of Santorini in the Bronze Age was similar to that of today, with a water-filled caldera and a small island in the middle, the olive tree grew on an elevated site at least 3.5 km away from the active zone (Friedrich & Heinemeier this volume, 57 Fig. 3), thus out of range of old CO$_2$, which is heavier than air and therefore tends to accumulate in low-lying areas. Strong evidence that our tree sample was not affected by volcanic CO$_2$ is that it would then have been impossible to match the measured 14C sequence to any part of the calibration curve. We observe a downward slope in our dating sequence, whereas one would expect an upward slope if the eruption took place around 1500 BC and had been contaminated with volcanic CO$_2$. The ageing effect should, if anything, increase due to increased emission in the period up to the eruption.

Fig. 11. The diagram shows the discrepancy between archaeological estimates and geochronological dating of the Minoan eruption. Our date for the Minoan eruption gives 1613 ± 13 cal BC, which is the most direct and precise result to date.
The pre-eruption quiescence is a crucial observation, and, together with the elevated growth-site of the trees and their distance from the active volcanic zone, it makes any significant volcanic effect on the radiocarbon dates highly unlikely.

It is curious that the radiocarbon dates proposed for organic materials from the Austrian excavations at Tell el-Dab‘a seem to show an offset of more than a century (according to Walter Kutschera)\(^\text{13}\) or even two (according to Hendrik Bruins)\(^\text{14}\) in comparison with the dates proposed by the excavators, based on their interpretation of the archaeological material. This is roughly in line with the alleged discrepancy between our proposed date for the Minoan eruption of Santorini and the lower dates proposed for that same event based on archaeological material. Yet in the Nile Delta the possible effect of old volcanic CO\(_2\) can be ruled out and another explanation sought. This has hitherto not been found. Instead, controlled radiocarbon datings by the laboratories at Oxford and Vienna of reliably dated archaeological material from Egyptian sources of the second millennium BC seem to correspond to dates proposed based on historical methods.\(^\text{15}\)

Conclusion

The new radiocarbon date has the advantage over the results of other scientific dating methods (Fig. 11) that it is directly connected to the Minoan eruption, whereas e.g. the ice core date\(^\text{16}\) or the frost damage in tree ring anomalies\(^\text{17}\) are not necessarily connected to the event. It is certainly noteworthy, however, that as early as 1984 when essentially no one was arguing for a date for the Minoan eruption of Santorini in the 17\(^\text{th}\) century BC, that on the basis of their frost ring evidence, LaMarche and Hirschboeck proposed that Thera may have erupted in 1627 BC or one or two years earlier, i.e. within the 2\(\sigma\) range of the present radiocarbon date.\(^\text{18}\) Inherently, a dendrochronological date is more precise – i.e. confined to a tighter time interval – than even a wiggle-match radiocarbon date because of the high replication of trees covering a given period and also the fact that absolute radiocarbon dating depends on dendrochronology for calibration. However, frost damage on tree rings is the result of a climatic anomaly that can be triggered by many processes. It is not necessarily connected to a volcanic eruption. The large error margins of the thermoluminescence method mean that it is not really relevant. Furthermore, the precision achieved by relying on a time sequence of four sequences of tree-rings far outweighs the value of a date derived from short-lived material. We therefore consider our radiocarbon date based on the 72 growth rings of an olive branch buried alive in the pumice on Thera to be the most reliable and accurate date of the Minoan eruption.

\(^\text{13}\) Bietak & Höflmayer 2003, fig. 1.
\(^\text{14}\) Bruins et al. 2008.
\(^\text{15}\) Marcus et al. n.d., Walter Kutschera (pers. comm. to the editor).
\(^\text{16}\) Vinther et al. 2008.
\(^\text{17}\) Baillie 1990.
\(^\text{18}\) LaMarche & Hirschboeck 1984.
Bibliography

Aitken, M.J. 1990
Science-based dating in archaeology, London.

Akkermans, P.M.M.G. & G. M. Schwartz 2003
The archaeology of Syria: from complex hunter-gatherers to early urban societies, Cambridge.

‘The geochemical regimes of Pito de la Fournaise Volcano (Réunion) during the last 530 years’, Journal of Petrology 38, 171–201.

Alberti, L. 2004

Alexiou, S. 1967
Υστερομινωικοί τάφοι λιμένος Κνωσού (Κατσαμπά), Athens.

Allen, J.P. 2002a

Allen, J.P. 2002b
The Höganakht Papyri, New York

Allen, P., S. Feiner, A. Troccoli, H. Benko, E. Ishak, B. Smith, 2004

Al-Maqdissi, M. 2005
The Metropolis of the Orontes, Damascus.

Al-Maqdissi, M. & D.M. Bonacossi 2005
The city of Chania through its monuments (2), Athens.

Andreadaki-Vlasi, K. 1997

Andreadaki-Vlasi, M. 2000
The county of Chania through its monuments (2), Athens.

Angelier, J., N. Lyberis, X. Le Pichon, E. Barrier & P. Huchon 1982

Artéca, R.N., B.W. Poovaia & O.E. Smith 1979

Assmann, J. 1970
Der König als Sonnenpriester (Abhandlungen des Deutschen Archäologischen Instituts Kairo: Ägyptologische Reihe 7), Glückstadt.

Aston, B.G. 1994
Ancient Egyptian stone vessels. Materials and forms (Studien zur Archäologie und Geschichte Ägyptiens, 5), Heidelberg.

Aston, D.A. 2003

Aston, D.A. 2004
Tell el-Dab'a XII. A corpus of Late Middle Kingdom and Second Intermediate Period pottery, Vienna.

Aston, D.A. 2007

Åström, P. 1961-1962
Áström, P. 1971

Áström, P. 1972a
The Swedish Cyprus Expedition. Vol. IV. Part 1B, Lund

Áström, P. 1972b

Áström, P. 1979

Áström, P. (ed.) 1987a
High, middle or low? Acts of an international colloquium on absolute chronology held at the University of Gothenburg 20th-22nd August 1987 (Studies In Mediterranean Archaeology – Paper Back 56), Gothenburg.

Áström, P. 1987b

Áström, P. 2000

Áström, P. (ed.) 2001a
The chronology of Base-Ring and Bichrome Wheel-made Ware. Proceedings of a colloquium held in the Royal Academy of Letters, History and Antiquities, Stockholm, May 18–19 2000 (KVHAA Konferenser 54), Stockholm.

Áström, P. 2000b

Bagh, T. 2000
The beginning of the Middle Bronze Age in Egypt and the Levant, Ph.D. dissertation, University of Copenhagen, Copenhagen.

Bagh, T. 2002

Bailie, M.G.L. 1990

Bailie, M.G.L. & M.A.R. Munro 1988

Baines, P.G, Morgan, T.J., Sparks, R.S.J. -2008

Banou, E.S. 1998

Barber, R.L.N. 1987
The Cyclades in the Bronze Age, London.

Barberi, F & M.L. Carapezza 1994
‘Helium and CO2 soil gas emission from Santorini (Greece)’, Bulletin of Volcanology 56, 335–42.

Barnard, K.A & T.M. Brogan 2003
Mochlos IB Period III. Neopalatial settlement on the coast: The Artisan’s Quarter and the farmhouse at Chalinomouri. The Neopalatial pottery (Prehistory Monographs 8), Philadelphia.

Barnard, K.A. & T.M. Brogan forth.
‘The Late Minoan IB pottery from Mochlos’, Brogan & Hallager forthcoming

‘10Be and dust’, Nuclear Instruments and Methods B123, 296–301.

Baxter, P.J. 2000

Baxter, P.J. 2001

Baxter, P.J. & M. Kapila 1989

Beckerath, J. von 1997
Chronologie des Pharaonischen Ägypten. Die Zeitbestimmung der ägyptischen Geschichte von der Vorzeit bis 332 v. Chr. (Münchner Ägyptologische Studien 46), Mainz.

Beckman, G. B. 2005

Bennett, Ch. 2006 ‘Genealogy and the chronology of the Second Intermediate Period’, Ägypten & Levante 16, 231–43.

Betancourt, P.P. 1985 The history of Minoan pottery, Princeton.

Betancourt, P.P. 2007 Introduction to Aegean art, Philadelphia.

Bevan, A. 2007
Stone vessels and values in the Bronze Age Mediterranean, Cambridge.

Bichler, M., K. Breitenecker, G. Steinhauser & J. Sterba 2006

Bichler, M., M. Exler, C. Peltz & S. Saminger 2003

Bichler, M., C. Peltz, S. Samminger & M. Exler 2002
‘Aegean tephra – an analytical approach to a controversy about chronology’, *Ägypten & Levante* 12, 55–70.

Bietak, M. 1987
‘The Middle Bronze Age of the Levant – a new approach to relative and absolute chronology’, in Åström 1987a, 78–120.

Bietak, M. 1994

Bietak, M. 1996b

Bietak, M. 1998
‘The Late Cypriot White Slip I-ware as an obstacle to the high Aegean chronology’ in Balmuth & Tykot 1998, 321–2.

Bietak, M. (ed.) 2000a

Bietak, M. 2000b

Bietak, M. 2001
‘Towards a chronology of Bichrome Ware? Some material from ‘Ezbet Helmi and Tell el-Dab‘a’, in Åström 2001a, 175–201.

Bietak, M. (ed.) 2002a

Bietak, M. 2002b
‘Relative and absolute chronology of the Middle Bronze Age: comments on the present state of research’, in Bietak 2002a, 29–42.

Bietak, M. (ed.) 2003a

Bietak, M. 2003b

Bietak, M. 2004
Review of *A test of time (= Manning 1999)*, *Bibliotheca Orientalis* 61, 199–222.

Bietak, M. 2005a

Bietak, M. 2005b

Bietak, M. 2007

Bietak, M. & E. Czerny (eds.) 2007

Bietak, M., J. Dorner & P. Jánosi 2001
Bietak, M. & I. Hein 2001

Bietak, M. & F. Höflmayer 2007

Bietak, M. & N. Marinatos 1995
‘The Minoan wall paintings from Avaris’, Ägypten & Levante 5, 49–62.

Bietak, M. & N. Marinatos 2000
‘Avaris (Tell el-Dab’a) and the Minoan World’, in Κρήτη-Αίγυπτος Πολιτισμικοί δέσμοι τρίων χιλιετιών, Athens, 40–4.

Bietak M., N. Marinatos & C. Palivou 2007
Taurerador scenes in Tell el-Dab’a (Avaris) and Knossos (Untersuchungen der Zweigstelle Kairo des Österreichischen Archäologischen Institutes 27), Vienna.

Biot, M. 1985

Bleiberg, E. 1996
The official gift in ancient Egypt, Norman.

Blitzer, H. 2004

Blitzer, H. forth.

Blong, R.J. 1982
The time of darkness: local legends and volcanic reality in Papua New Guinea, Canberra.

Bond, A. & R.S.J. Sparks 1976

Bottema, S. & A. Sarpaki 2003

Bourriau, J. 1981a
Umm el-Ga’ab: pottery from the Nile Valley before the Arab conquest, Cambridge.

Bourriau, J. 1981b

Bourriau, J. 1991

Bourriau, J. 2000

Bourriau, J. & A. Millard 1971

Branigan, K. 1968
Copper and bronze working in Early Bronze Age Crete (Studies in Mediterranean Archaeology 19), Lund.

Braithwaite, H. [1906] 1962

‘Laboratory experiments of

Brinkman, J. A. 1968
A political history of Post-Kassite Babylonia, Rome.

Brinkman, J. A . 1976²

Brogan, T.M. & E. Hallager (eds.) forth.
LMIB pottery: relative chronology and regional differences, Athens (forthcoming)

Bronk Ramsey, C. 1995

Bronk Ramsey, C. 2001

Bronk Ramsey, C. 2008a

Bronk Ramsey, C. 2008b

Bronk Ramsey, C. 2009

Bronk Ramsey, C., C.E. Buck, S.W. Manning, P. Reimer & H. van der Plicht 2006
‘Developments in radiocarbon calibration for archaeology’, Antiquity 80, 783–98.

Bronk Ramsey, C., T. Higham & P. Leach 2004b
‘Towards high-precision AMS: progress and limitations’, Radiocarbon, 46, 17–24

Bronk Ramsey, C., S.W. Manning & M. Galimberti 2004a
‘Dating the volcanic eruption at Thera’, Radiocarbon 46, 325–44.

Bronk Ramsey C., van der Plicht, J. and Weninger, B. 2001

Brook, M., C.B. Moore, & T. Sigurdsson 1974

‘Geoarchaeological tsunami deposits at Paläkastro (Crete) and the Late Minoan IA eruption of Santorini’, Journal of Archaeological Science 35, 191–212.

Brunton, G. & R. Engelbach 1927
Girou (British School of Archaeology in Egypt and Egyptian research account twenty-fourth year, 1918), London.

Brunton, G. & W.M.F. Petrie 1924
Sedment, London.

Bruyere, B. 1937

Bryan, B. 2006

Buchholz, H.-G. 1974

Buchholz, H.-G. 1999

Bayesian approach to interpreting archaeological data, Chichester.

Buck, C.E. & P.G. Blackwell 2004

Buck, C., T. Higham & D. Lowe 2003
‘Bayesian tools for tephrochronology’, The Holocene 13, 639–47.

Bull, I.D., P.P. Betancourt & R. Evershed 1999
‘Chemical evidence for a structured manuring regime on the island of Pseira, Crete during the Minoan period,’ in Betancourt et al. 1999, 69–73.
Cadogan, G. 1978
‘Dating the Aegean Bronze Age without radiocarbon’, *Archaeometry* 20, 209–14.

Cadogan, G. 1979

Cadogan, G. 1983
‘Early Minoan and Middle Minoan Chronology’, *American Journal of Archaeology* 87, 507–18.

‘Volcanic glass shards in Late Minoan I Crete’, *Antiquity* 46, 110 –5.

Cadogan, G. & R. K. Harrison 1978

Knossos: palace, city, state (British School at Athens Studies 12), London.

Cadogan, G., E. Herscher, P. Russell & S.W. Manning 2001

‘The boxing day collapse’, *Montserrat Volcano Observatory Special Report 06*.

Carapezza M.L., B. Badalamenti, L. Cavarra, & A. Scalzo 2003
‘Gas hazard assessment in a densely populated area of Colli Albani volcano (Cava dei Selci, Roma), *Journal of Volcanology and Geothermal Research* 123; 81–94.

Carter, H. 1916

Catling, H.W. & V. Karageorghis 1960

Catling, H.W. & J.A. MacGillivray 1983

Chapin, A.P. & M.C. Shaw 2006
‘The frescoes from the House of the Frescoes at Knossos: a reconsideration of their architectural context and a new reconstruction of the crocus panel’, *Annual of the British School at Athens* 101, 57–88.

Charpin, D. & N. Ziegler 2003

Chiodini, G., C. Cardellini, A. Amato, E. Boschi, S. Caliro, F. Frondini & G. Ventura 2004
‘Carbon dioxide earth degassing and seismogenesis in central and southern Italy’, *Journal of Geophysical Research* 31, L07615.

‘Quantification of deep CO2 fluxes from central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing’, *Chemical Geology* 159, 205–22.

Christen, J.A. 1994

Christen, J.A. & C.E. Buck 1998

Cioni, R., L. Gurioli, A. Sbrana & G. Vougioukalakis 2000
‘Precursory phenomena and destructive events related to the Late Bronze Age Minoan (Thera, Greece) and AD 79 (Vesuvius, Italy) Plinian eruptions;

Davies, B.G. 1995 Egyptian historical records of the later Eighteenth Dynasty, fascicle VI, Warminster.

Davis, E.N. 1977 The Vapheio Cups and Aegean gold and silver ware, New York.

Doumas, C.G. 1974

Thera and the Aegean World I, London.

Doumas, C.G. (ed.) 1980
Thera and the Aegean World II, London.

Doumas, C.G. 1983

Doumas, C.G. 1983

Doumas, C.G. 1990
‘Archeomagnetic dating of Minoan volcanic eruptions and fired destruction levels of Late Minoan civilization’ *Nature* 309, 519–23.

Dreyer, G. 1998
Umm el-Qaab I. Das Prädynastische Königsgrab U-j und seine frühen Schriftzeugnisse (Deutsches Archäologisches Institut Archäologische Veröffentlichungen 86), Mainz.

Driessen, J. M. & A. Farnoux (eds.) 1997
La Crète Mycénienne (*Bulletin de la Correspondence Hellenique Supplement* 30), Paris.

Driessen J. M. & J. A. MacGillivray forthcoming

Santorini volcano (Geological Society Memoirs 19), London.

Druitt, T.H. & V. Francaviglia 1990

Druitt, T.H., R.A. Mellors, D.M. Pyle, & R.S.J. Sparks 1989
‘Explosive volcanism on Santorini, Greece’, *Geological Magazine* 126, 95–126.

Dufek, J. & G.W. Bergantz 2007
‘Dynamics and deposits generated by the Kos Plateau Tuff eruption: controls on basal particle loss on pyroclastic flow transport’, *Geochemistry Geophysics Geosystems* 8(12).

Duhoux, Y. 2003

Dunand, M. 1927
‘La Cinquième Campagne des Fouilles de Byblos’, *Syria* 8, 93–104.

Dunn, S. 2002
The chronology of the Aegean Late

Eddy, J.A. 1977
‘Climate and the changing sun’, Climatic Change 1, 173–90.

Edwards, J.S. 2005

El-Khouli, A. A. H. 1993

Enoch, H.Z. & J.M. Olesen 1993
‘Tansley review no. 54, plant response to irrigation with water enriched with carbon dioxide’, New Phytologist 125, 249–58.

Eriksen, U., W.L. Friedrich, H. Tauber, B. Buchhardt & M.S. Thomsen 1990
‘The Stronghyle caldera: geological, palaeontological and stable isotope evidence from radiocarbon dated stromatolites from Santorini, in Hardy et al. 1990b, 139–50.

Eriksson, K.O. 1991

Eriksson, K.O. 1992

Eriksson, K.O. 1993
Red Lustrous Wheel-Made Ware (Studies in Mediterranean Archaeology 103), Jonsered.

Eriksson, K.O. 2001a
‘Cypriot ceramics in Egypt during the reign of Thutmosis III: the evidence of trade for synchronizing the Late Cypriot cultural sequence with Egypt at the beginning of the Late Bronze Age’, in Åström 2001a, 51–68.

Eriksson, K.O. 2001b

Eriksson, K.O. 2003
‘A preliminary synthesis of recent chronological observations on the relations between Cyprus and other Eastern Mediterranean societies during the Late Middle Bronze – Late Bronze II periods’, in Bietak 2003a, 411–29.

Eriksson, K.O. 2007a
‘Using Cypriot Red Lustrous Wheel-made Ware to establish cultural and chronological synchronisms during the Late Bronze Age’, in Hein 2007, 51–60.

Eriksson, K.O. 2007b
The creative independence of Late Bronze Age Cyprus. An account of the archaeological importance of White Slip ware (Contributions to the chronology of the Eastern Mediterranean 10), Vienna.

Evans, A. 1906
The prehistoric tombs of Knossos, London.

Evans, A.J. 1928
The Palace of Minos at Knossos, II, Oxford.

Evans, A.J. 1935
The Palace of Minos at Knossos, IV, London.

Farrand, W.R., & C.H. Stearns 2004

Fimmen, D. 1924
Die Kretisch-Mykenische Kultur, Leipzig.

Firth, C.M. & B. Gunn 1926
Excavations at Saqqara. Teti Pyramid Cemeteries I–II, Cairo.

Fischer, P.M. 2001
‘Cypriote Bichrome Wheel-made Ware and Base-Ring Ware from the new excavations at Tell el-‘Ajul: synchronism and dating’, in Åström 2001a, 221–30.

Fischer, P. M. 2003

Fischer, P.M. 2004
‘Coast contra inland: Tell el-‘Ajul..."
and Tell Abu al-Kharaz during the late Middle and Late Bronze Ages’, Levan 14, 249–63.

Fischer, P.M. (ed.) 2006b The chronology of the Jordan Valley during the Middle and Late Bronze Ages: Pella, Tell Abu al-Kharaz and Tell Deir ‘Alla, Vienna.

Galanaki, I., H. Tomas, Y. Galanakis & L. Laffineur 2007 Between the Aegean and Baltic Seas. Prehistory across borders (*Aegaeum* 27), Liège.

Goedicke, H. 1995
Studies about Kamose and Ahmose, Baltimore.

Goedicke, H. 2004
The Speos Artemidos inscription of Hatshepsut and related discussions, Oakville, CT.

Goldberg, P. 2005

Goodchild, M.F. 2008
‘What does Google Earth mean for the social sciences?’, in Geographic visualization: concepts, tools and applications, M. Dodge, M. McDerby & M. Turner (eds), Chichester.

Grace, V.R. 1940
‘A Cypriote tomb and Minoan evidence for its date’, *American Journal of Archaeology* 44, 10–52.

Grattan, J.P. & Gilbertson, D.D. 2000

Grayson, A. K. 1983
‘Königslisten und Chroniken B. Akkadisch’, *Realklexikon der Assyriologie und vorderasiatischen Archäologie* 6, 86–135.

Grayson, A. K. 1975
Ayyrian and Babylonian chronicles, Locust Valley, NY.

Grove, A.T. & O. Rackham 2003
The nature of Mediterranean Europe: an ecological history, New Haven.

Guidoboni, E., 1994
Catalogue of ancient earthquakes in the Mediterranean area up to the 10th century, Rome.

Guidoboni, E. & A. Comastri 2005
Catalogue of earthquakes and tsunamis in the Mediterranean area from the 11th to the 15th century, Rome.

‘Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition’, *Journal of Geophysical Research* 112 (B05213)

Hammer, C.U. 2000
‘What can Greenland ice core data say about the Thera eruption in the 2nd millennium BC?’, in Bietak 2000a, 35–7.

Hammer, C., H.B. Clausen, & W. Dansgaard 1980

Hammer, C.U., G. Kurat, P. Hoppe & H.B. Clausen 2001

Hammer, C.U., G. Kurat, P. Hoppe, W. Grum & H.B. Clausen 2003
‘Thera eruption date 1645 BC confirmed by new ice core data?’, in Bietak 2003a, 87–94.

Hankey, V. 1967
‘Mycenaean pottery in the Middle East: notes on finds since 1951’, *Annual of the British School at Athens* 62, 107–47.

Hankey, V. 1973
‘Late Minoan finds in the south-Eastern Mediterranean’, *Περιοδικό του ιστορικού μουσείου της Αθήνας*

Harris, J. 1968 ‘How long was the reign of Horemheb?’, Journal of Egyptian Archaeology 54, 95–106.

Helmi, speziell Areal H/V’, Ägypten & Levante 11, 121–47.

Hein, I. 2001b ‘On Bichrome and Base Ring Ware from several excavation areas at ‘Ezbet Helmi’, in Åström 2001a, 231–47.

Hein, I. (ed.) 2007 The Lustrous Wares of Late Bronze Age Cyprus and the Eastern Mediterranean, Vienna.

Hood, M.S.F. 1978 The arts in Prehistoric Greece, Harmondsworth.

Horwell, C.J., I. Fenoglio, K. Vala Ragnarsdottir, R.S.J. Sparks & B. Fubini 2003 ‘Surface reactivity of volcanic ash
from the eruption of Soufriere Hills volcano, Montserrat, West Indies with implications for health hazards’, *Environmental Research* 93, 202–15.

Jidejian, N. 1977 *Byblos through the ages*, Beirut.

Kaplan, M.F. 1980 *The origin and distribution of Tell el Yahudiyeh Ware* (Studies in Mediterranean Archaeology 42) Gothenburg.
Karageorghis, V. (ed.) 1979

Karageorghis, V. 1990

Karageorghis, V. 1991

Karageorghis, V. (ed.) 2001

Karageorghis, V. 2006
Aspects of everyday life in ancient Cyprus. Nicosia.

Karo, G. 1930-33
Die Schachtgräber von Mykenai I-II, Munich.

Kastens, K.A. & M.B. Cita 1981

Keel, O. 1997
Corpus der Stempelsiegel-Amulette aus Palästina/Israel. Katalog, Band I (Orbis Biblicus et Orientalis, Series Archaeologica 13), Freiburg.

Keenan, D.J. 2002

Keenan, D.J. 2003

Keenan, D.J. 2004
‘Radiocarbon dates from Iron Age Gordion are confounded’, *Ancient West and East* 3, 100–3.

Kemp, B.J. & R.S. Merrillees 1980
Minoan pottery in Second Millennium Egypt, Mainz.

Kempinski, A. 1974

Kempinski, A. 1993
‘The Middle Bronze Age in northern Israel, local and external synchronisms’, *Ägypten & Levante* 3, 69–73.

Kempinski, A. 1997

Kempinski, A. (ed.) 2002

Kempinski, A., L. Gershuny & N. Scheftelowitz 2002

Keswani, P.F.S. 2005

Kirk, G. S. 1985

Kitchen, K.A. 1987

Kitchen K. A. 1996

Kitchen, K.A. 2000

Kitchen K. A. 2002
‘Ancient Egyptian chronology for Aegeanists’, *Mediterranean Archaeology and Archaeometry* 2, 5–12.

Kitchen, K. A. 2007

Klengel, H.1992
Syrria 3000-300 BC, Berlin.

Klug, A. 2002
Königliche Stelen in der Zeit von Ahmose bis Amenophis III (Monumenta aegyptiaca 8), Brussels.
Knappett, C. & T. F. Cunningham 2003

Koch, J. 1998

Koehl, R. 2000

Koehl, R. B. 2006
Aegean Bronze Age rhyta (Prehistory Monographs 19), Philadelphia.

Kopetzky, K. 2002

Kooij, van der G. 2006
‘Tell Deir cAlla. The Middle and Late Bronze Age chronology’, in Fischer 2006a, 199–226.

Krauss, R. 1985
Sothis- und Monddaten (Hildesheimer Ägyptologische Beiträge 20), Hildesheim.

Krauss, R. 2007

Laffineur, R. & E. Greco (eds.) 2005
EMPORIA. Aegeans in the central and Eastern Mediterranean (Aegaeum 25), Liège.

Lal, D. & B. Peters 1967

LaMarche, V.C. & K.K. Hirschboeck 1984

Lambrou-Phillipson, C. 1990
Hellenorientalia plus Orientalia. A catalogue of Egyptian, Mesopotamian, Mitannian, Syro-Palestinian, Cypriot and Asia Minor objects from the Bronze Age Aegean (Studies in Mediterranean Archaeology Pocketbook 95), Gothenburg.

Landsberger, B. 1954

Lapp, P. W. 1967

Larsen, M.T. 1976
The Old Assyrian city-state and its colonies, Copenhagen.

Leonard, A. 1994 An index to the Late Bronze Age Aegean pottery from Syria-Palestine (Studies in Mediterranean Archaeology 114), Jonsered.

MacGillivray, J.A. 1997 ‘The re-occupation of eastern Crete in the Late Minoan II-

MacGillivray, J.A. 1998
Knossos: pottery groups of the Old Palace Period (British School at Athens Studies 5), London.

MacGillivray, J.A. 2003

MacGillivray, J.A. 2004

MacGillivray, J.A. 2008

MacGillivray, J.A. forth.

The Palaikastro Kouros (British School at Athens Studies 6), London.

Palaikastro: Building 1. Sacred space in transition (British School at Athens Supplementary Volume), forthcoming.

Mackay, E.J.H. & M.A. Murray 1952
Ancient Gaza, Vol. 5 (British School of Egyptian Archaeology 64), London.

MacKenzie, D. 1978

Macqueen, J. G. 1986
The Hittites and their contemporaries in Asia Minor, New York.

Maier, A.M. 2007

Maguire, L.C. 1995

Mallet, J. 2002

Manassa, C. 2003
The Great Karnak Inscription of Merneptah: grand strategy in the 13th century BC. (Yale Egyptological Studies 5), New Haven.

Manning, S.W. 1988
‘The Bronze Age eruption of Thera: absolute dating, Aegean chronology and Mediterranean cultural interrelations’, Journal of Mediterranean Archaeology 1, 17–82.

Manning, S.W. 1992

Manning, S.W. 1995
The absolute chronology of the Aegean Early Bronze Age, Sheffield.

Manning, S.W. 1996

Manning, S.W. 1999
A test of time: the volcano of Thera and the chronology and history of the Aegean and East Mediterranean in the mid Second Millennium BC, Oxford.

Manning, S.W. 2001
‘The chronology and foreign connections of the Late Cypriot I period: times they are a’changin’, in Aström 2001a, 68–94.

Manning, S.W. 2005

Manning, S.W. 2007

Manning, S.W., C. Bronk Ramsey, C. Doumas, T. Marketou, G. Cadogan & C.L. Pearson 2002
‘New evidence for an early date for the Aegean Late Bronze Age and Thera eruption’, Antiquity 76, 733–44.
Manning, S.W. & C. Bronk Ramsey 2003
“A Late Minoan I-II absolute chronology for the Aegean – combining archaeology with radiocarbon”, in Bietak 2003a, 111–33.

Manning, S. W., C. Bronk Ramsey, W. Kutschera, T. Higham, B. Kromer, P. Steir & E. M. Wild 2006a

Manning, S. W., C. Bronk Ramsey, W. Kutschera, T. Higham, B. Kromer, P. Steir & E. M. Wild 2006b
‘Supporting online material for chronology for the Aegean Late Bronze Age 1700–1400 B.C.’, Science 312, 565. www.sciencemag.org/cgi/content/full/312/5773/565/DC1.

Manning, S. W., C. Bronk Ramsey, W. Kutschera, T. Higham, B. Kromer, P. Steir and E. Wild 2009
‘Dating the Santorini/Thera eruption by radiocarbon: further discussion (AD 2006-2007)’, in Manning & Bruce 2009 (in press).

Manning, S. W. & M. J. Bruce (eds.) 2009 (in press)

Manning, S. W., L. Crewe & D. A. Sewell 2006c

Manning, S. W., B. Kromer, P. I. Kuniholm & M. W. Newton 2001

Manning, S. W., S. J. Monks, G. Nakou, & F. A. De Mita jr. 1994
‘The fatal shore, the long years and the geographical unconscious. Considerations of iconography, chronology, and trade in response to Negbi’s “The “Libyan landscape” from Thera: a review of Aegean enterprises overseas in the Late Minoan IA period’, Journal of Mediterranean Archaeology 7, 219–35.

Manning, S. W., Sewell, D. A., & E. Herscher 2002
‘Late Cypriot I A maritime trade in action: underwater survey at Maroni Tsaroukkas and the contemporary east Mediterranean trading system’, Annual of the British School at Athens 97, 97–162.

Manning, S. W. & B. Weninger 1992
‘A light in the dark: archaeological wiggle matching and the absolute chronology of the close of the Aegean Late Bronze Age’, Antiquity 66, 636–63.

Marchal, O., Stocker, T. F. & R. Muscheler 2001

‘Radiocarbon confirms historical date of Egyptian Queen/Pharaoh Hatshepsut’, n.d.

Manning, S.W. & C. Bronk Ramsey 2003
‘On the ceremonial function of the Minoan polythyron’, Opuscula Atheniensia 16, 57–73.

Marinatos, N. 1984

Marinatos, S. 1939

Marinatos, N. 1986
‘Excavations at Thera I-VII, Athens.

Marketou, T. 1990

Marketou, T., Y. Fackrellis & Y. Maniatis 2001
‘New Late Bronze Age cxhronology from the Ialysos Region, Rhodes’, Mediterranean Archaeology and Archaeometry 1, 19–29.

Marsan, D. & O. Lengline 2008

Marthari, M. 1984

Marthari, M. 1990
‘The chronology of the last phases of occupation at Akrotiri in the light of the evidence from the West House pottery groups’, in Hardy & Renfrew 1990, 57–70.
Marthari, M. 1993

‘Bang! month-scale eruption triggering at Santorini volcano,’ Science 321, 1178.

Marzocchi, W., E. Casarotti & A. Piersanti 2002

Masarik, J. & J. Beer 1999

Mason, B.G., D.M. Pyle & C. Oppenheimer 2004

Matthäus, H. 1995

Matthäus, H. 1996

Matz, F. 1973

McClelland, E. & R. Thomas 1990

McCoy, F.W. 1980a

McCoy, F.W. 1980b
Climate change in the Eastern Mediterranean area during the past 240,000 Years,’ in Thera and the Aegean World II, Doumas, C., ed. v. 2; London, 79–100.

McCoy, F.W. 1981

McCoy, F.W. 2003

McCoy, F.W. 2005

McCoy, F.W. & S. Dunn 2002
‘Modelling the climatic effects of the LBA eruption of Thera: new calculations of tephra volumes may suggest a significantly larger eruption than previously reported’, Chapman conference on volcanism and the earth’s atmosphere, Thera, Greece: American Geophysical Union.

McCoy, F.W. & S.E. Dunn 2004
‘The LBA eruption of Thera: new finds of tephra and calculations of tephra volumes suggest a significantly larger eruption than previously reported’, (abstract), Archaeological Institute of America, 105th Annual Meeting, San Francisco.

McCoy, F.W. & G. Heiken 2000a
‘The Late-Bronze Age explosive eruption of Thera (Santorini), Greece: regional and local effects’, in McCoy & Heiken 2000b, 43–70.

McCoy, F.W. & G. Heiken (eds.) 2000b
Volcanic hazards and disasters in human antiquity, Boulder (Geological Society of America Special Paper 345).

McCoy, F.W. & G. Heiken 2000c
‘Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece’, Pure and Applied Geophysics 157, 1227–56.
McCoy, F.W., C. Synolakis & G. Papadopoulos 2000
‘Tsunami generated by the LBA eruption of Thera – Evidence from modelling and sedimentary deposits’ (abstract), EOS Transactions, American Geophysical Union 81(48): F1224.

McDonald, A. & N. C. Wilkie, (eds.) 1992
Excavations at Nichoria in southwest Greece. Vol II: The Bronze Age occupation, Minneapolis.

McHargue, L. R. & P. E. Damon 1991

McKenzie, D.P. 1972

McNutt, S.R. 2000

Meier, T., M. Rische, B. Endrun, A. Vafidis & H.-P. Harjes 2004

Merrillies, R.S. 1968
The Cypriote Bronze Age pottery found in Egypt (Studies in Mediterranean Archaeology 18), Lund.

Merrillies, R.S. 1970

Merrillies, R.S. 1974
‘Appendix III. Tell el-‘Ajul fine and imported wares’, in Tell el-‘Ajul. The Middle Bronze Age remains, J.R. Stewart (ed.) (Studies in Mediterranean Archaeology 38), Gothenburg, 86–111.

Merrillies, R.S. 1992

Merrillies, R.S. 2001

Merrillies, R.S. 2002

Merrillies, R.S. 2003
‘The first appearances of Kamares ware in the Levant’, Ägypten & Levante 13, 127–42.

Merrillies, R.S. 2007
‘The ethnic implications of Tell el-Yahudiyyah Ware for the history of the Middle to Late Bronze Age in Cyprus’, Cahier du Centre d’Études Chypriotes 37, 87–96.

Merrillies, R.S. & J. Winter 1972
‘Bronze Age trade between the Aegean and Egypt: Minoan and Mycenaean pottery from Egypt in the Brooklyn Museum’, Miscellania Wilbouriana 1, 101–33.

Michael, H.N. 1976

Michel, C. & P. Rocher 2000

Michel, C. 2002

Michel, C. 2007

Millard, A.R. 1994
The eponyms of the Assyrian Empire 910–612 BC, Helsinki.

Miller, J.L. 2007

‘Geochemistry of water and gas discharges from the Mt. Amiata silicic complex and surrounding areas (central Italy)’, Journal of Volcanology and Geothermal Research 79, 223–51.

Minoura, K., F. Imamura, T. Takahashi & N. Shuto 1997
‘Sequence of sedimentation processes caused by the 1992
Flores tsunami: evidence from Babi island,’ Geology 25, 523–6.

Miron, R. 1990
Das ’Schatzhaus’ im Palastbereich. Die Funde (Saarbrücker Beiträge zur Altertumskunde 46 = Kamid el-Loz. 10), Bonn.

Mitrousis, A. 2008

Mizrachy, Y. 2002

Mlinar, C. 2002

Monges Soares, A.M. 1993

Montet, P. 1921–22

Montet, P. 1928

Montet, P. 1929

Moody, J. 2005
‘Unravelling the threads: climate changes in the Late Bronze III Aegean’, in Ariadne’s threads: Connections between Crete and the Greek Mainland in Late Minoan III (LM IIIA2 to LM IIIC), A.-L. D’Agata & J. Moody (eds.) (Tripodes 3, Scuola Archeologica Italiana di Atene), Athens, 443–70.

Moody, J., O. Rackham, & G. Rapp 1996

Moore, J. G. 1966

Moran, W. L. 1992
The Amarna letters, Baltimore.

Morgan, L. (ed.) 2005
Aegean wall paintings: a tribute to Mark Cameron (British School at Athens Studies 13), London.

Morgan, L. 2006
‘Art and international relations: the hunt frieze at Tell el-Dab’a’, in Czerny et al. 2006, 249–58.

‘Carbon degassing from the lithosphere’, Global and Planetary Change 33, 185–203.

Mountjoy, P.A. 1983

Mountjoy, P.A. 1986
Mycenaean decorated pottery: a guide to identification (Studies in Mediterranean Archaeology 73), Gothenburg.

Mountjoy, P.A. 1999
Regional Mycenaean decorated pottery, Rahden.

Mountjoy, P. A. 2004

Müller, V. 2007
‘Wie gut fixiert ist die Chronologie des Neuen Reiches wirklich?’, Ägypten & Levante 16, 203–30.

Müller, W. 1997

Murray, J.B., H. Rymer, & C.A. Locke 2000

‘Changes in deep-water formation during the Younger Dryas cold period inferred from a comparison of 10Be and 14C records’, Nature 408, 567–70.

‘Changes in the carbon cycle during the last deglaciation as indicated by the comparison of 10Be and 14C records’, Earth and Planetary Science Letters 219, 325–40.

Naflioti, A. 2008
‘“Mycenaean” political domination of Knossos following the Late Minoan IB destructions on Crete: negative evidence from strontium isotope ratio analysis (87Sr/86Sr)’, Journal of Archaeological Science 35: 2307–17.

Newhall, C. G. & S. Self 1982
‘The volcanic explosivity index (VEI): an estimate of explosive

Newton, M.W., S. Talamo, C. Pulak, B. Kromer & P. Kuniholm 2005

Nicholls, G.K. & M.D. Jones 2001

Niemeier, B. & W.-D. Niemeier 2002

Niemeier, W.-D. 1980

Niemeier, W.-D. 1990a
‘New archaeological evidence for a 17th century date of the “Minoan Eruption” from Israel (Tel Kabri western Galilee)’, in Hardy & Renfrew 1990, 120–6.

Niemeier, W.-D. 1990b

Niemeier, W.-D. 1991

Niemeier, W.-D. 1993

Niemeier, W.-D. 1995a

Niemeier, W.-D. 1995b

Niemeier, W.-D. 2005

Ninkovich, D. & B.C. Heezen 1965

Ninkovich, D. & B.C. Heezen 1967

Nixon, I.G. 1985

Novák, M. & P. Pfälzner 2002

Nur, A. & E.H. Cline 2000

Nyst, M. & W. Thatcher 2004

O’Conner, D. 2006

Oppenheimer, C. 2003

Oren, E.D. (ed.) 1997
The Hyksos: new historical and archaeological perspectives, (University Museum Symposium Series 8), Philadelphia.

Oren, E.D. 2001
‘Early White Slip pottery in

Peltz, C., P. Schmid & M. Bichler M. 1999 ‘INAA of Aegean pumices for
the classification of archaeological findings’, *Journal of Radioanalytical and Nuclear Chemistry*, 242/2, 361–77.

Pendlebury, J.D.S. 1939 *The archaeology of Crete*, London.

Perrota, A., & C. Scarpati 2002 ‘Volume partition between the Plinian and co-ignimbrite air fall deposits of the campanian ignimbrite eruption,’ *Mineralogy and Petrology* 79, 67–78.

Petrie, W.M.F. & G. Brunton 1924 *Sedment I–II* (British School of Archaeology in Egypt and Egyptian Research Account Twenty-seventh Year 1921), London.

Posener, G. 1965

Pottier, E. 1922

Preston, L. 1999

Preston, L. 2004a

Preston, L. 2004b

Pruzsinszky, R. 2007

Pulak, C. 2005a
‘Who were the Mycenaeans aboard the Uluburun ship?’, in Laffineur & Greco 2005, 295–310.

Pulak, C. 2005b

Pyle, D.M. 1997

Pyle, D.M. 2000

Rackham, O. 1965–1966
Transpiration, assimilation and the aerial environment, Ph.D. dissertation, Cambridge University, Cambridge.

Rackham, O. 2002

Rackham, O. 2003
The nature of Mediterranean Europe, New Haven.

Rackham, O. 2006
Woodlands, New York.

Rackham, O., & J.A. Clark 2004

Rackham, O. & J. Moody 1997
The making of the Cretan landscape, Manchester.

‘Cosmogenic 10Be/7Be as a probe of atmospheric transport processes’, Geophysical Research Letters 8, 1015–8.

Rapp, G. Jr., S. R. B. Cooke & E. Henrickson 1973
‘Pumice from Thera (Santorini) identified from a Greek mainland archaeological excavation’, Science 179, 471–3.
Reeves, C.N. 1990
Valley of the Kings. The decline of a royal necropolis, London.

Rehak, P. 1996

‘INTCAL04 terrestrial radiocarbon age calibration, 0–26 CAL KYR BP’, *Radiocarbon* 46, 1029–58.

Reimer, P.J. & G. McCormac 2002

Reiner, E. & D. Pingree 1975
Enuma Anu Enlil Tablet 63: the Venus Tablet of Ammissaduqa, Malibu.

Renan, E. 1862
Catalogue des objets provenant de la mission de Phénicie, Paris.

Renfrew, C. 1973
Before civilization: the radiocarbon revolution and prehistoric Europe, London.

Robertson, B.M. 1999

Robock, A. & M.P. Free 1995
‘Ice cores as an index of global volcanism from 1850 to the present’, *Journal of Geophysical Research* 100, 11549–67.

Robock, A. 2000

Roehrig, C.H. 2005

Hatshepsut from queen to pharaoh, New Haven-London.

Rogie, J.D. 1996

Rogie, J.D., D.M. Kerrick, G. Chiodini & F. Frondini 2000
‘Flux measurements of nonvolcanic CO2 emission from some vents in central Italy’, *Journal of Geophysical Research* 105.B4, 8435–45.

Rutter, J.B. 2006

Rutter, J.B. forth.
‘Late Minoan IB at Kommos: a sequence of at least three distinct stages’, in Brogan & Hallager, forthcoming.

Roussakis, G., A.P. Karageorgos, & N. Conispoliatis 2004

Russell, J.K. & M.V. Stasiuk, M.V. 2000

Ryholt, K.S.B. 1997
The political situation in Egypt during the Second Intermediate Period c. 1800-1550 B.C. (Carsten Niebuhr Institute Publications 20), Copenhagen.

Ryholt, K.S.B. 2004
‘The Turin King-List,’ *Ägypten & Levante* 14, 135–55.

Sagan, C. 1979
Broca’s brain: reflections on the romance of science, New York.

‘Amazon forests green-up during 2005 drought’, *Science* 318, 612.

Saltz, D.L. 1977
‘The chronology of the Middle Cypriote period’, *Report*
Department of Antiquities Cyprus
1977, 51–70.

Salzer, M.W. & M.K. Hughes 2007
‘Bristlecone pine tree rings and
volcanic eruptions over the last
5000 yr’, Quaternary Research 67,
57–68.

Sassmannshausen, L. 2006
‘Zur mesopotamischen Chrono-
logie des 2. Jahrtausends’,
Baghdader Mitteilungen 37, 157–77.

Scaillet, B., M. Pichavant & R.
Cioni, R. 2008
‘Upward migration of Vesuvius
magma chamber over the past
20,000 years’, Nature 455, 2186–
2195.

Schaeffer, C.F.A. 1938
‘De quelques problemes que
soulèvent les découvertes de Tell

Schaeffer, C.F.A. 1939a
‘Les fouilles de Ras Shamra –
Ugarit’, Syria 20, 277–92.

Schaeffer, C.F.A. 1939b
Ugaritch I, Paris.

Schaeffer, C.F.A. 1948
Stratigraphie comparée, Oxford.

Schaeffer, C.F.A. 1949

Schaeffer, C.F.A. 1962
Ugaritch IV, Paris.

Schneider, Th. 2008
‘Das Ende der Kurzen
Chronologie: eine kritische Bilanz
der Debatte’, Ägypten
& Levante 18, 273–313.

Scott, E.M. 2000
‘Bayesian methods: what can we
gain and at what cost?’, Radiocarbon
42, 181.

Seager, R.B. 1909
‘Excavations on the island of
Mochlos, Crete, in 1908’, American

Seager, R.B. 1910
Excavations on the island of Pseira,
Philadelphia.

Seal, Th. 2001
Review of Gasche et al. 1998,
Bibliotheca Orientalis 58, 163–73.

Self, S. & M. Rampino 1981
‘The 1883 eruption of Krakatau’,

Sewell, D. A. 2001
Earth, air, fire and water. An elementa-
al analysis of the Minoan eruption of the
Santorini volcano in the Late Bronze
Age, Ph.D. dissertation, University of
Reading, Reading.

Shaw, J.W. 1986
‘Excavations at Kommos (Crete)
during 1984–1985’, Hesperia 55,
219–69.

Shaw, J.W. & M.C. Shaw (eds.)
2006
Kommos V. The monumental Minoan
buildings at Kommos, Princeton.

Shaw, M. 1996
‘The bull-leaping fresco from
below the Ramp House at
Mycenae: a study in iconography
and artistic transmission’, Annual
of the British School at Athens 91,
167–90.

Shaw, M.C. 1998
‘The painted plaster reliefs from
Pseira,’ in Betancourt & Davaras
1998a, 55–76.

Shaw, M.C. & J.G. Younger 2009
Review of Bietak et al. 2007,
American Journal of Archaeology 113
(in press).

Siegenthaler, U. 1983
‘Uptake of excess CO2 by an
outcrop–diffusion model ocean’,
Journal of Geophysical Research 88,
3599–608.

Sigurdsson, H. (ed.) 2000
Encyclopedia of volcanoes, New York.

Sigurdsson, H., S. Carey, M.
Alexandri, G. Vougioukalakis, K.
Croff, C. Roman, D. Sakellariou,
C. Anagnostou, G. Rousakis, C.
Ioakim, A. Gogou, D. Ballas, T.
Misaridis & P. Nomikou, 2006
‘Marine investigations of Greece’s
Santorini volcanic field,’ Eos:
Transactions of the American
Geophysical Union 87(34), 337–48.

Sigurdsson, H., S. Carey & J.D.
Devine 1990
‘Assessment of mass, dynamics
and environmental effects of the
Minoan eruption of Santorini
volcano’, in Hardy et al. 1990b,
100–2.

Siklósy, Z., A. Demény, T.W.
Vennemann, S. Pilet, J. Kramers,
S. Leél-Össy, M. Bondár, C.-C.
Chuan-Chou Shen & E. Hegner
2009
‘Bronze Age volcanic event
recorded in stalagmites by
combined isotope and trace
element studies’, Rapid Communications in Mass Spectrometry 23,
801–8.

Simkin, T. & R.S. Fiske 1983
Krakatau 1883: the volcanic eruption
and its effects, Washington, DC.

Simkin, T. & L. Siebert 2000
‘Earth’s volcanoes and eruptions:
an overview,’’ in Sigurdsson 2000,
249–62.

Simkin, T., L. Siebert, L.
McClelland, D. Bridge, C.
Newhall & J. H. Latter 1981
Volcanoes of the world: a regional
directory, gazetteer, and chronology
of volcanism during the last 10,000
years, Stroudsburg PA.
Simkin, T. & L. Siebert 1994

Volcanoes of the World, Tuscon.

Simpson, W. K. (ed.) 1972

Skok, J., W. Chorney & W.S. Broecker 1962

Soles, J.S. 1983

Soles J.S. 1991

Soles, J.S. 2003

Soles, J.S. 2004a

Soles, J.S. 2004b

Soles J. S. & C. Davaras 1990

Sørensen, A.H. 2008

Sorensen, A.H. forth.

Spalinger, A. J. 2006

‘Covetous eyes south: the background to Egypt’s domination over Nubia by the reign of Thutmose III’, in Cline & O’Connor 2006, 344–69.

Sparks, R.S.J. 1978

Sparks, R.S.J. 1986

Sparks, R.T. 2007

Stone vessels in the Levant, Leeds.

Sparks, R.S.J. & C.J.N. Wilson, 1990

Splittstoesser, W.E. 1966

Stager, L.E. 2002

Stager, L.E., J.D. Schloen, D.M. Master 2008

Stamatopoulos, A. & P. Kotzias 1990

Stampolidis, N. Chr. & V. Karageorghis (eds.) 2003

Stanley, D.J. & H. Sheng 1986

Steinhauser, G., J. H. Sterba, M. Bichler, & H. Huber 2006
‘Neutron activation analysis of Mediterranean volcanic rocks: an analytical database for archaeological stratigraphy’, Applied Geochemistry 21, 1362–75.

Sterba, J.H., K.P. Foster, G. Steinhauser & M. Bichler 2009

Stewart, J. 1962
‘The tomb of the Seafarer at Karmi in Cyprus’, Opuscula Atheniensia 4, 197–204.

Stewart, J. 1974
Tell el-'Ajjul: the Middle Bronze remains (Studies in Mediterranean Archaeology 38), Gothenburg.

Stiros, S.C. 2001

Stix, J. & H. Gaonach 2000

Stolwijk, J.A.J. & K.V. Thimann 1957

Stothers, R. B. 1984

Stothers, R.B. 1996
‘The great dry fog of 1783’, Climate Change 32, 79–89.

Strøm, I. 1982
Gækkenlands forhistoriske kulturer II, Copenhagen.

Stubbings, F.H. 1951
Mykenes pottery from the Levant, Cambridge.

Stuiver, M. & T.F. Braziunas 1993
‘Sun, ocean, climate and atmospheric 14CO2; an evaluation of causal and spectral relationships’, The Holocene 3.4, 289–305.

‘INTCAL98 radiocarbon age calibration, 24,000–0 cal BP’, Radiocarbon 40, 1041–83.

Switsur, V.R. 1984

Tait, J. (ed.) 2003
“Never had the like occurred”: Egypt’s view of its past, London.

Tartaron, T. F. 2008

Taylor, J.H. 1989
Egyptian coffins (Shire Egyptology 11), Aylesbury.

ten Veen, J.H. & K.L. Kleinspehn 2003

Teskey, R.O. & M.A. McGuire 2007

Trevisanato S.I. 2006 ‘Treatments for burns in the London Medical Papyrus show the first seven biblical plagues of Egypt are coherent with Santorini’s volcanic fallout’, Medical Hypotheses 66 (1), 193–6.

Tsipopoulou, M. 2002 ‘Petras, Siteia: the palace, the town, the hinterland and the Protopalatial background’, in Monuments of Minos: rethinking the Minoan palaces, J. Driessen, I. Schoep & R. Laffineur (eds.) (Aegaeum 23), Liège, 133–44.

Quarry, Thera’, in Doumas 1978, 203–15

Wachsmann, S. 1987 Aegeans in the Theban tombs (Orientalia Lovaniensia Analecta 20), Louvain.

Warren, P.M. 1979 ‘The stone vessels from the Bronze Age settlement at Akrotiri, Thera’, Archaeologiki Ephemeris, 82 – 113.

Warren, P. M. 1991b ‘A new Minoan deposit from Knossos, c. 1600 BC and its wider

Warren, P.M. & V. Hankey 1989 Aegean Bronze Age chronology, Bristol.

Warren, P.M. & V. Hankey 1989 Aegean Bronze Age chronology, Bristol.

Wiener, M.H. 2006a

Wiener, M.H. 2006b

Wiener, M.H. 2007

‘Cold fusion: the uneasy alliance of history and science’, in Manning & Bruce 2009 (in press).

Wijngaarden, G.J. 2003
Use and appreciation of Mycenaean pottery in the Levant, Cyprus and Italy (ca. 1600–1200 BC), Amsterdam.

Wilford, J.N. 1989

Williams, H. 1942
The geology of Crater Lake National Park, Oregon, with a reconnaissance of the cascade range southward to Mt. Shasta (Carnegie Institute Publication 540), Washington, D.C.

Woolley, L. 1955