An Application of Computable Distributions to the Semantics of Probabilistic Programs

Daniel Huang
University of California, Berkeley

Greg Morrisett
Cornell University

Bas Spitters
Aarhus University

Abstract: In this chapter, we explore how (Type-2) computable distributions can be used to give both distributional and (algorithmic) sampling semantics to probabilistic programs with continuous distributions. Towards this end, we first sketch an encoding of computable distributions in a fragment of Haskell. Next, we show how topological domains can be used to model the resulting PCF-like language. Throughout, we hope to emphasize the connection of such an approach with ordinary programming.

Keywords: semantics, computable distributions, topological domains

1 Overview

Probabilistic programs exhibit a tension between the continuous and the discrete. On one hand, we are interested in using probabilistic programs to model natural phenomenon—phenomenon that are often modeled well with reals and continuous distributions (e.g., as in physics and biology). On the other hand, we are also bound by the fundamentally discrete nature of computation, which limits how we can (1) represent models as programs and then (2) compute the results of queries on the model. The aim of this chapter is to keep this tension in the fore by using the notion of a computable...
distribution as a lens through which to understand probabilistic programs. We organize our exploration via a series of questions.

(i) What is a computable distribution (Section 2)? First, we review Type-2 computability (e.g., see Weihrauch (2000)) and how it applies to reals and continuous distributions. The high-level idea is to represent continuum-sized objects as a sequence of discrete approximations that converge to the appropriate object instead of abstracting the representation of such an object.

(ii) How do we implement continuous distributions as a library in a general-purpose programming language (Section 3)? After we have seen the basic idea behind Type-2 computability, we sketch an implementation in Haskell that does not use reals or continuous distributions as black-box primitives.

(iii) What mathematical structures can we use to model such a library (Section 4)? Our next step is to find mathematical structures that can be used to faithfully model the implementation. Here, we will see that topological domains (e.g., see Battenfeld et al. (2007); Battenfeld (2008)) are an alternative to traditional structures (i.e., complete partial orders, abbreviated CPOs) that can be used to model PCF-like languages. Topological domains capture Type-2 computability and are also connected with realizability (e.g., see Streicher (2008)), an interpretation of constructive mathematics.

(iv) What does a semantics for a core language look like (Section 5)? In this section, we make the connection between the implementation and the mathematics more concrete by giving semantics to a core PCF-like language extended with reals and continuous distributions called λ_{CD}. λ_{CD} also supports distributions on any countably based space. This means that λ_{CD} does not (in general) have distributions on function spaces, although the language itself contains higher-order functions. We give both (algorithmic) sampling and distributional semantics to λ_{CD}.

(v) What are the implications of taking a computable viewpoint for Bayesian inference (Section 6)? Perhaps surprisingly, at least to those who employ Bayesian inference in practice, it can be shown that conditioning is not computable; see Ackerman et al. (2011). Hence, there is a sense in which a “Turing-complete” probabilistic programming language cannot support conditional queries for every expressible probabilistic model. Fortunately, we do not run into these pathologies in practice and can recover conditioning in sufficiently general settings.

Throughout this chapter, we hope to make the connection between a semantics based on Type-2 computability and ordinary programming.
2 Computability Revisited

What is a computable distribution? One approach to studying computability is based on Turing machines (e.g., see Sipser [2012]). Under this approach, we define (1) a machine model (i.e., the Turing machine) and (2) conditions under which the machine model is said to compute. More concretely, a Turing machine is said to compute a (partial) function \(f : \Sigma^* \rightarrow \Sigma^* \) if it halts with \(f(w) \in \Sigma^* \) on the output tape given \(w \in \Sigma^* \) on an input tape, where \(\Sigma \) is a finite set and \(\Sigma^* = \{a_0 \ldots a_n \mid a_i \in \Sigma, 0 \leq i \leq n \} \) is collection of words comprised of characters from \(\Sigma \).

This definition of computability reveals that traditional computation is fundamentally discrete. We can see this directly in the definition of a computable function (with type \(\Sigma^* \rightarrow \Sigma^* \)), which maps elements of a discrete domain (i.e., a set of finite words \(\Sigma^* \)) to elements of a discrete codomain (i.e., a set of finite words \(\Sigma^* \) again). As \(\Sigma^* \) is countable, it cannot be put in bijection with the reals \(\mathbb{R} \); hence, we cannot encode all the reals on a Turing machine.

One immediate issue that this highlights for probabilistic programs is how we should handle reals and continuous distributions while maintaining the connection back to computation. A pragmatic solution to this is to use floating point arithmetic, i.e., discretize and finitize the reals. From this perspective, we can model the semantics of probabilistic programs using floating point numbers and finitely-supported discrete distributions (on floats) so that the semantics more faithfully models an actual implementation. Nevertheless, we sacrifice the correspondence between the program and the mathematics that we use on pencil-paper. An alternative to the situation above is to generalize the notion of computability to continuum-sized sets in such a way that the computations are still physically realizable.

2.1 Type-2 Computability

Type-Two Theory of Effectivity [Weihrauch (2000)] (TTE) changes the conditions under which a machine is said to compute an answer but keeps the machine model as is. In this setting, a machine is said to compute a function \(f : \Sigma^\omega \rightarrow \Sigma^\omega \) if it can write any initial segment of \(f(w) \in \Sigma^\omega \) on the output tape in finite time given \(w \in \Sigma^* \) on an input tape, where \(\Sigma^\omega = \{a_0a_1 \ldots \mid a_i \in \Sigma, i \in \mathbb{N} \} \) is the set of streams composed of symbols from the finite set \(\Sigma \). The set \(\Sigma^\omega \) has continuum cardinality, and hence, can represent the reals and a class of distributions (Section 2.2). Once we repre-
sent continuum-sized objects on a machine, we have an avenue for studying which functions are computable.

Instead of using a concrete machine model, we can abstract the machine itself using the structure of a *partial combinatory algebra* (PCA). A PCA consists of an underlying set X and a partial application function $\cdot : X \times X \rightharpoonup X$ subject to certain laws that ensure *combinatorial completeness*, i.e., that a PCA can simulate untyped lambda calculus. Hence, we can think of a PCA as an algebraic take on substitution. A realizability interpretation of constructive mathematics uses a PCA to realize witnesses (Section 4.4). We obtain ordinary Type-1 computability by instantiating a PCA over the naturals \mathbb{N}; the partial application function of a PCA $\cdot : \mathbb{N} \rightharpoonup \mathbb{N}$ can be defined to simulate the computation of partial recursive functions. By extension, we obtain a Type-2 machine by instantiating a PCA over *Baire space* $\mathcal{B} = \mathbb{N} \rightarrow \mathbb{N}$; the partial application function of a PCA $\cdot : (\mathbb{N} \rightarrow \mathbb{N}) \rightharpoonup (\mathbb{N} \rightarrow \mathbb{N})$ can be defined to simulate the computation over streams of naturals. The Type-2 qualifier refers to the fact that inputs are encoded by $\mathbb{N} \rightarrow \mathbb{N}$. Throughout the rest of the chapter, we will abbreviate Type-2 computable as computable4 and use (Type-2) computable for emphasis. We now review computable reals and distributions.

2.2 Computability, Reals and Distributions

Computability and reals Intuitively, we can represent a real on a machine by encoding its binary expansion. More formally, we represent a real $x \in \mathbb{R}$ on a machine by encoding a fast Cauchy sequence of rationals that converges to x. Recall that a sequence $(q_n)_{n \in \mathbb{N}}$ is *Cauchy* if for every $\epsilon > 0$, there is an N such that $|q_n - q_m| < \epsilon$ for every $n, m > N$. Thus, the elements of a Cauchy sequence become closer and closer to one another as we traverse the sequence. When $|q_n - q_{n+1}| < 2^{-n}$ for all n, we call $(q_n)_{n \in \mathbb{N}}$ a fast *Cauchy sequence*. Hence, the representation of a real as a fast Cauchy sequence evokes the idea of enumerating its binary expansion. A real $x \in \mathbb{R}$ is **computable** if we can enumerate (uniformly in an enumeration of rationals) a fast Cauchy sequence that converges to x.

As an example of a computable real, consider two possible convergent sequences to the real number 0 below.

$$0 = \lim_{n \to \infty} x_n \text{ where } x_n = 0 \text{ for } n \in \mathbb{N} \quad \text{(constant)}$$

$$0 = \lim_{n \to \infty} y_n \text{ where } y_n = \frac{1}{(-2)^{n+1}} \text{ for } n \in \mathbb{N} \quad \text{(thrashing)}$$

4 Computability in the ordinary sense refers to Type-1 computability.
As 0 itself is also a rational number, we can simply represent it as a constant 0 sequence given by \((x_n)_{n \in \mathbb{N}}\). We can also represent 0 as the sequence \((y_n)_{n \in \mathbb{N}}\), where the sequence jumps back and forth between positive and negative fractional powers of two as it converges towards 0.

A function \(f : \mathbb{R} \to \mathbb{R}\) is **computable** if given a (fast Cauchy) sequence converging to \(x \in \mathbb{R}\), there is an algorithm that outputs a (fast Cauchy) sequence converging to \(f(x)\). For example, the function \(+_0 : \mathbb{R} \to \mathbb{R}\) that adds 0 is computable because an algorithm can obtain a (fast Cauchy) output sequence by adding the (fast Cauchy) input sequence element-wise to a (fast Cauchy) sequence of 0. We emphasize that the algorithm must work generically for any input (fast Cauchy) sequence. This requirement means that some functions will not be computable. For instance, consider the function \(=_0 : \mathbb{R} \to \{t, f\}\) (\(\{t, f\}\) is the set of booleans), that tests if the input is equal to 0 or not. Intuitively, this function is not computable because we need to check the entire input sequence. For example, to check that the constant sequence is equivalent to the thrashing sequence, we have to check the entirety of both sequences, which cannot be done in finite time.

Computable metric spaces Topological spaces enable us to build a more general notion of computability on a space. For the purposes of introducing reals and distributions, we consider topological spaces with a notion of distance, i.e., metric spaces. As a reminder, a metric space \((X, d)\) is a set \(X\) equipped with a **metric** \(d : X \times X \to \mathbb{R}\). A metric induces a collection of sets called (open) **balls**, where a ball centered at \(c \in X\) with radius \(r \in \mathbb{R}\) is the set of points within \(r\) of \(c\), i.e., \(B(c, r) = \{x \in X \mid d(c, x) < r\}\). The topology \(\mathcal{O}(X)\) associated with a metric space \(X\) is the one induced by the collection of balls. Hence, the open balls of a metric space provide a notion of distance in addition to providing a notion of approximation.

Example 1.1. \((\mathbb{N}, d_{\text{Discrete}})\) endows the naturals \(\mathbb{N}\) with the discrete topology (i.e., \(\mathcal{O}(\mathbb{N}) = 2^{\mathbb{N}}\)), where \(d_{\text{Discrete}}\) is the discrete metric (i.e., \(d(n, m) = 0\) if \(n = m\) and \(d(n, m) = 1\) otherwise for \(n, m \in \mathbb{N}\)).

Example 1.2. \((\mathbb{R}, d_{\text{Euclid}})\) endows the reals \(\mathbb{R}\) with the familiar Euclidean topology, where \(d_{\text{Euclid}}\) is the standard Euclidean metric.

Example 1.3. \((2^\omega, d_{\text{Cantor}})\) endows the set of bit-streams \(2^\omega\) with the Cantor topology, where \(d_{\text{Cantor}}\) is defined as

\[
d_{\text{Cantor}}(x, y) = 1/2^n,
\]

where \(n = \min\{i \mid x_i \neq y_i\}\). One can check that a basic open set of the
Huang, Morrisett and Spitters

Cantor topology is of the form $a_1 a_2 \ldots a_n 2^\omega$, where $a_i \in 2 = \{0, 1\}$ for $1 \leq i \leq n$. That is, basic open sets of Cantor space fix finite-prefixes.

A computable metric space imposes additional conditions on a metric space so that a machine can enumerate successively more accurate approximations (according to the metric) of a point in the metric space. We need two additional definitions before we can state the definition. First, we say S is dense in X if for every $x \in X$, there is a sequence $(s_n)_{n \in \mathbb{N}}$ that converges to x, where $s_n \in S$ for every n. Second, we say that (X,d) is complete if every Cauchy sequence comprised of elements from X also converges to a point in X.

Definition 1.4 (Hoyrup and Rojas, 2009, Def. 2.4.1). A computable metric space is a tuple (X,d,S) such that (1) (X,d) is a complete metric space, (2) S is a countable, enumerable, and dense subset, and (3) $d(s_i,s_j)$ is computable for $s_i, s_j \in S$.

Example 1.5. $(\mathbb{R}, d_{\text{Euclid}}, \mathbb{Q})$ is a computable metric space for the reals where we use the rationals \mathbb{Q} as the approximating elements. Note that we can equivalently use dyadic rationals as the approximating elements instead of \mathbb{Q}.

Computability and distributions A distribution over the computable metric space (X,d,S) can be formulated as a point of the computable metric space

$$(\mathcal{M}(X), d_{\rho}, \mathcal{D}(S)),$$

where $\mathcal{M}(X)$ is the set of Borel probability measures on a computable metric space (X,d,S), d_{ρ} is the Prokhorov metric (see Hoyrup and Rojas, 2009, Defn. 4.1.1.), and $\mathcal{D}(S)$ is the class of distributions with finite support at ideal points S and rational masses (see Hoyrup and Rojas, 2009, Prop. 4.1.1)). The Prokhorov metric is defined as:

$$d_{\rho}(\mu,\nu) \triangleq \inf\{\epsilon > 0 \mid \mu(A) \leq \nu(A^\epsilon) + \epsilon \text{ for every Borel } A\},$$

where $A^\epsilon = \{x \mid d(x,A) < \epsilon\}$. One can check that the sequence below converges (with respect to the Prokhorov metric) to the (standard) uniform distribution $U(0,1)$.

$$\left\{0 \mapsto \frac{1}{2}, \frac{1}{2} \mapsto \frac{1}{2}\right\}, \left\{0 \mapsto \frac{1}{4}, \frac{1}{4} \mapsto \frac{1}{4}, \frac{1}{4} \mapsto \frac{3}{4}, \frac{3}{4} \mapsto \frac{1}{4}\right\}, \ldots.$$

Thus, a uniform distribution can be seen as the limit of a sequence of increasingly finer discrete, uniform distributions. As with a computable real,
we say that a distribution $\mu \in \mathcal{M}(X)$ is computable if we can enumerate (uniformly in an enumeration of a basis and rationals) a fast Cauchy sequence that converges to μ. Although the idea of a (computable) distribution as a (computable) point is fairly intuitive for the standard uniform distribution, it may be less insightful for more complicated distributions.

Alternatively, we can think of a distribution on a computable metric space (X,d,S) in terms of sampling, i.e., as a (Type-2) computable function $2^\omega \to X$. To make this more concrete, we sketch an algorithm that samples from the standard uniform. The idea is to generate a value that can be queried for more precision instead of a sample x in its entirety. Thus, a sampling algorithm will interleave flipping coins with outputting an element to the desired precision, such that the sequence of outputs $(s_n)_{n \in \mathbb{N}}$ converges to a sample.

For instance, one binary digit of precision for a standard uniform corresponds to obtaining the point 1/2 because it is within 1/2 of any point in the unit interval. Demanding another digit of precision produces either 1/4 or 3/4 according to the result of a fair coin flip. This is encoded below using the function bisect, which recursively bisects an interval n times, starting with $(0,1)$, using the random bit-stream u to select which interval to recurse on.

$$\text{uniform} : (\mathbb{N} \to \text{Bool}) \to (\mathbb{N} \to \mathbb{R})$$

$$\text{uniform} \triangleq \lambda u. \lambda n. \text{bisect} u 0 1 n$$

In the limit, we obtain a single point corresponding to the sample.

The sampling view is (computably) equivalent to the view of a computable distribution as a point in an appropriate computable metric space. To state the equivalence, we need a few definitions. A computable probability space (Hoyrup and Rojas, 2009, Def. 5.0.1) (X,μ) is a pair where X is a computable metric space and μ is a computable distribution. We call a distribution μ on X samplable if there is a computable function $s : (2^\omega, \mu_{\text{id}}) \to (X,\mu)$ such that s is computable on $\text{dom}(s)$ of full-measure and is measure-preserving.

Proposition 1.6 (Computable iff samplable, see (Freer and Roy, 2010, Lem. 2 and 3)). A distribution $\mu \in \mathcal{M}(X)$ on computable metric space (X,d,S) is computable iff it is samplable.

Hence, Proposition 1.6 gives the computable analog of the probability integral transform and inverse transform from statistics.
3 A Library for Computable Distributions

How do we implement continuous distributions as a library in a general-purpose programming language? Our goal in this section is to translate the concepts about reals and distributions we saw previously in Section 2 into code. Towards this end, we sketch a Haskell library (Figure 1) that encodes reals and the sampling view of distributions. We emphasize that the library does not take reals or continuous distributions as black-box primitives.

3.1 Library

The module ApproxLib provides abstractions for expressing elements as a sequence of approximations in a computable metric space. The type \(\text{Approx} \ \tau \) models an element of a computable metric space and can be read as an approximation by a sequence of values of type \(\tau \). For example, a real can be given the type \(\text{Real} \triangleq \text{Approx} \ \text{Rat} \), meaning it is a sequence of rationals that converges to a real. We form values of type \(\text{Approx} \ \tau \) using \(\text{mkApprox} \), which requires us to check that the function we are coercing describes a fast Cauchy sequence, and project out approximations using \(\text{nthApprox} \).

To form \(\text{Approx} \ \tau \), values of type \(\tau \) should support the operations required of a computable metric space. We can indicate the required operations using Haskell’s type-class mechanism.

```haskell
class CMetrizable a where
  enum :: [a]
  metric :: a -> a -> Approx Rat
```

When we implement an instance of \(\text{CMetrizable} \ \tau \), we should check that the implementation of \(\text{enum} \) enumerates a dense subset and \(\text{metric} \) computes a metric as a computable metric space requires (see Section 2.2). Below, we give an instance of \(\text{Approx} \ \text{Rat} \) for computable reals.

```haskell
instance CMetrizable Rat where
  enum = 0 : [ toRational m / 2^n |
    n <- [1..],
    m <- [-2^n * n .. 2^n * n],
    odd m || abs m > 2^n * (n - 1) ]
  metric x y = A (\_ -> abs (x - y))
```

This instance enumerates the dyadic rationals (powers of 2), which are a dense subset of the reals. Note that there are many other choices here for the dense enumeration. In this instance, we can actually compute the metric as

\[A(_ \rightarrow \text{abs}(x - y)) \]

The code is available at https://github.com/danehuang/cdist-sketch.

Algorithms that operate on computable metric spaces compute by enumeration so the algorithm is sensitive to the choice of enumeration.
An Application of Computable Distributions...

module ApproxLib (Approx(..), CMetrizable(..), mkApprox, nthApprox) where

newtype Approx a = Approx { getApprox :: Nat -> a }
mkApprox :: (Nat -> a) -> Approx a -- fast Cauchy sequence
nthApprox :: Approx a -> Nat -> a -- project n-th approx.

class CMetrizable a where
 enum :: [a] -- countable, dense subset
 metric :: a -> a -> Approx Rat -- computable metric

module CompDistLib (RandBits, Samp(..), mkSamp) where
import ApproxLib

type RandBits = Nat -> Bool
newtype Samp a = Samp { getSamp :: RandBits -> a }
mkSamp :: (CMetrizable a) => (RandBits -> Approx a) -> Samp (Approx a)
mkSamp = Samp

instance Monad Samp where
 ...

Figure 1 A Haskell library interface for expressing approximations in a computable metric space (module ApproxLib) and encoding computable distributions (module CompDistLib).

A dyadic rational, whereas a computable metric requires the weaker condition that we can compute the metric as a computable real.

Next, we can use the module ApproxLib to implement computable operations on commonly used types. For example, a library for computable reals will contain the CMetrizable τ instance implementation above and other computable functions. However, some operations are not realizable (e.g., equality of reals) and so this module does not contain all operations one may want to perform on reals (e.g., equality is defined on floats).

module RealLib (Real, pi, (+), ...) where
import ApproxLib

type Real = Approx Rat
Huang, Morrisett and Spitters

instance CMetrizable Rat where
...

pi :: Real
(+*) :: Real -> Real -> Real
-- etc.

The module CompDistLib contains the implementation of distributions. A sampler Samp α is a function from a bit-stream (i.e., RandBits represented isomorphically as Nat -> Bool instead of [Bool]) to values of type α.

type RandBits = Nat -> Bool
newtype Samp a = Samp { getSamp :: RandBits -> a }

We can implement an instance of the sampling monad as below.

instance Monad Samp where
return x = Samp (const x)
(>>=) s f = Samp ((uncurry (getSamp . f)) . (pair
(getSamp s . fst) snd) . split)
where pair f g = \x -> (f x, g x)
split = pair even odd
even u = (\n -> u (2 * n))
odd u = (\n -> u (2 * n + 1))

As expected, return corresponds to a constant sampler (const) that ignores its input randomness. The bind operator >>= corresponds to a composition of samplers; we first split (split) the input randomness into two independent streams (via even and odd), use one to sample from s, and continue with the other in f.

The module CompDistLib provides the function mkSamp to coerce an arbitrary Haskell function of the appropriate type into a value of type Samp α.

mkSamp :: (CMetrizable a) => (RandBits -> Approx a) -> Samp (Approx a)

We should call mkSamp only on sampling functions realizing (Type-2) computable sampling algorithms.

3.2 Examples

We now encode discrete and continuous distributions using the constructs provided by library. These examples demonstrate how familiar distributions used in probabilistic modeling can be encoded in a (Type-2) computable manner. As we walk through the examples, we will encounter some semantic issues that we would like a denotational semantics of probabilistic programs to handle. We will flag these in italics and revisit them after introducing a semantics for probabilistic programs (Section 5).
Discrete distribution Discrete distributions are much simpler compared to continuous distributions. Nevertheless, when paired with recursion, semantic issues do arise. For instance, consider the encoding of a geometric distribution with bias $1/2$, which returns the number of fair Bernoulli trials until a success. The distribution `stdBernoulli` denotes a Bernoulli distribution with bias $1/2$.

```haskell
stdGeometric :: Samp Nat
stdGeometric = do
  b <- stdBernoulli
  if b then return 1
  else stdGeometric >>= return . (\n -> n + 1)
```

One possibility, although it occurs with zero probability, is for the draw from `stdBernoulli` to always be false. Consequently, `stdGeometric` diverges with probability zero. A semantics should clarify the criterion for divergence and show that this recursive encoding actually denotes a geometric distribution.

Continuous distributions Next, we fill in the sketch of the standard uniform distribution we presented earlier. As a reminder, we need to convert a random bit-stream into a sequence of (dyadic) rational approximations.

```haskell
stdUniform :: Samp Real
stdUniform = mkSamp (\u -> mkApprox (\n -> bisect (n +1) u 0 1 0))
where
  bisect n u (l :: Rat) (r :: Rat) m
  | m < n && u m
  | m < n && not (u m)
  | otherwise
    = midpt l r
  midpt l r = l + (r - l) / 2
```

The function `bisect` repeatedly bisects an interval specified by (l,r). By construction, the sampler produces a sequence of dyadic rationals. We can see that this sampling function is uniformly distributed because it inverts the binary expansion specified by the uniformly distributed input bit-stream. Once we have the standard uniform distribution, we can encode other primitive distributions (e.g., normal, exponential, etc.) as transformations of the uniform distribution as in standard statistics using return and bind.

For example, we give an encoding of the standard normal distribution using the Marsaglia polar transformation.

```haskell
stdNormal :: Samp Real
stdNormal = do
```
The distribution \(\text{uniform} \ (-1) 1 \) is the uniform distribution on the interval \((-1, 1)\) and can be encoded by shifting and scaling a draw from \(\text{stdUniform}\). One subtle issue here concerns the semantics of \(<\). As a reminder, equality on reals is not decidable. *Consequently, although we have used < at the type Real \(\rightarrow\) Real \(\rightarrow\) Bool in the example, it cannot have the standard semantics of deciding between < and \(\geq\).*

Singular distribution Next, we give an encoding of the Cantor distribution. The Cantor distribution is singular so it is not a mixture of a discrete component and a component with a density. Perhaps surprisingly, this distribution is computable. The distribution can be defined recursively. It starts by trisecting the unit interval, and placing half the mass on the leftmost interval and the other half on the rightmost interval, leaving no mass for the middle, continuing in the same manner with each remaining interval that has positive probability. We can encode the Cantor distribution by directly transforming a random bit-stream into a sequence of approximations.

\[
\text{cantor} :: \text{Samp Real} \\
\text{cantor = mkSamp (\u -> mkApprox (\n -> go u 0 1 0 n))}
\]

where

\[
go u (\text{left} :: \text{Rat}) (\text{right} :: \text{Rat}) n m \quad | \quad n < m \&\& u n = \\
\quad \quarterly
The term `botSamp`, we define an infinite loop at the type of samplers. Intuitively, this corresponds to the case where we fail to provide a sampler, i.e., an error in the worst possible way. In the term `botSampBot`, we produce a sampler that always fails to return a sample. In other words, we provide a sampler that is faulty in the worst possible way. We can try to observe the differences in the implementation (if any).

If we run the term `alwaysDiv` on the left, we will see that the program always diverges. When we run the term `neverDiv` on the right, we will draw from the sampler `botSampBot` but discard the result. Due to Haskell’s lazy semantics, this computation is ignored and the entire term behaves as a standard uniform distribution. We would like a denotational semantics to reflect the differences in the operational behavior between these two terms. Note that laziness enables us to reason about distributions equationally.

Commutativity and independence

We end by considering the difference between a sampling and distributional interpretation of probabilistic programs. Below, we give equivalent encodings of distributions by commuting the order of sampling from independent distributions, but leaving everything else fixed.

From a sampling perspective, the two distributions are not strictly equivalent because the stream of random bits is consumed in a different order; consequently, the samples produced by `myNormal` and `myNormal'` may be different. Thus, while a sampling semantics is easily implementable, we would also like a distributional semantics to enable reasoning about the distributional equivalence of programs. For instance, this would enable us to reason...
that two different sampling algorithms for the same distribution are equivalent.

3.3 Notes

The implementation we sketched above is a proof of concept that shows that we can realize the interface by implementing computable distributions and operations on them as Haskell code. We note that there are multiple approaches to coding up Type-2 computability as a library. One prominent alternative is given by synthetic topology Escardó (2004), which assumes that the function space in the programming language used to code up topological results is continuous and derives the notion of an open set. For the settings such as computable metric spaces that we will primarily be working with in practice, such a general approach can help us structure the implementation, but will not necessarily help us with understanding concrete examples.

Another shortcoming of the library, and implementations of Type-2 computability more generally, is efficiency. We intend the presentation of the library as a means to sketch the connection of the computation with the mathematics. In practice, there are still reasons for using floating point arithmetic. First, inference algorithms are computationally intensive, even assuming operations on reals and distributions are constant-time, so one is willing to make tradeoffs for efficiency. Second, it is not necessary to compute answers to arbitrary accuracy for most applications. Notably, most inference algorithms already make approximations as the solutions to many interesting models are analytically intractable. Thus, there is still a (large) gap in practice between semantics and implementation. For ideas on how to implement Type-2 computability efficiently, we refer the reader to Bauer and Kavkler (2008) and Lambov (2007).

Lastly, in our description of the library, we have elided one important detail. One computable function we need to encode is the modulus of a computable function between computable metric spaces. The modulus \(g : (X \to Y) \to \mathbb{N} \to \mathbb{N} \) of a computable function \(f : X \to Y \) between computable metric spaces \((X, d_X, S_X)\) and \((Y, d_Y, S_Y)\) is a function that computes the number of input approximations consumed to produce an output approximation to a specified precision. For example, if the algorithm realizing \(f \) looks at \(s_{i_0}^X, \ldots, s_{i_4}^X \) to compute an output \(s_{i_n} \) such that \(d_Y(s_{i_n}^Y, f(x)) < 2^{-(n+1)} \) and \((s_{i_m}^X)_{m \in \mathbb{N}} \to x \), then the modulus \(g(f)(n) \) is 42. Within a machine model, one can simply “look at the tape and head location” to obtain the modulus. However, one can show that the modulus of continuity is not ex-
pressible in a functionally-extensional language. This in essence follows from
the fact that the modulus of two extensionally equivalent functions may
not be equivalent. We can use Haskell’s imprecise exceptions mechanism
(see Peyton Jones et al. (1999)), an impure feature, in a restricted manner
to express the modulus.

4 Mathematical Structures for Modeling the Library

What mathematical structures can we use to model such a library? Now that
we have seen that we can implement reals and continuous distributions in
code, our next task is to find mathematical structures that can be used to
model the implementation. In doing so, we will set ourselves up for giving
denotational semantics to probabilistic programs (Section 5) under the
additional constraint that the model takes computability into account.

Towards this end, we review topological domains (Section 4.1), an
alternative to traditional domain theory that additionally supports (Type-2)
computability. Topological domains possess the structure required to inter-
pret PCF-like languages, and hence, can form the basis of a semantics for
these languages. Our next task is to find topological domains corresponding
to distributions on some space. We do this for a sampling view (Section 4.2)
and a distributional view (Section 4.3) based on valuations, a topological
variant of a measure. We also construct a probability monad Giry (1982) so
we can model the monadic implementation of distributions in the library.

Finally, we put the approach proposed here, which emphasizes (Type-2)
computability, in perspective. First, we explore an alternative approach to
capturing (Type-2) computability a la realizability (Section 4.4). Roughly
speaking, we can view a constructive logic as a “programming language”
that we can use to program computable distributions. We end (Section 4.5)
by briefly reviewing alternative structures that can be used to model the
semantics of probabilistic programs.

4.1 Domains and Type-2 Computability

In this section, we review topological domains. Unlike a CPO, a topological
domain in general does not carry the Scott topology, and hence, does not
consider the partial order primary. Instead, topological domains start with
the topology as primary and derive the order. For a complete treatment,
we refer the reader to Battenfeld (2008) and the references within (e.g.,

See http://math.andrej.com/2006/03/27/sometimes-all-functions-are-continuous
Towards this end, we will follow the overview of Battenfeld et al. (2007) to introduce the main ideas, which constructs topological domains in two steps by (1) connecting computability to topology and (2) relating topology to order. Most of this overview can be skimmed upon a first read, although the examples will be helpful. At the end, we will summarize the relevant structure that makes topological domains good candidates for modeling probabilistic programs. In Section 5, we will use this structure to give semantics to a core language.

Computability to topology Topological domain theory starts with the observation that topological spaces provide a good model of *datatypes*. In short, a point in a topological space corresponds to an inhabitant of a datatype and the open sets of the topology describe the observable properties of points. Consequently, one can test if an inhabitant of a datatype satisfies an observable property by performing a (potentially diverging) computation that tests if the point is contained in an open set. To make use of this observation, topological domain theory builds off of the Cartesian closed category of *qcb₀* spaces (e.g., see Escardó et al. (2004)), a subcategory of topological spaces that makes the connection between computation and topology precise. It is helpful to introduce a *qcb₀* space by way of a *represented space* which starts with the idea of realizing computations on a machine model before adding back the topological structure.

Definition 1.7. A *represented space* (X, δ_X) is a pair of a set X with a partial surjective function $\delta_X : 2^\omega \rightarrow X$ called a *representation*. We call $p \in 2^\omega$ a *name* of x when $\delta_X(p) = x$. Thus, a name encodes an element of the base set X as a bit-stream which in turn can be computed on by a Turing machine. A *realizer* for a function $f : (X, \delta_X) \rightarrow (Y, \delta_Y)$ is a (partial) function $F : 2^\omega \rightarrow 2^\omega$ such that $\delta_Y(F(p)) = f(\delta_X(p))$ for $p \in \text{dom}(f \circ \delta_X)$. A function $f : X \rightarrow Y$ between represented spaces is called *computable* if it has a computable realizer. It is called *continuous* if it has a continuous realizer (with respect to the Cantor topology). Unfolding the definition of continuity of a (partial) function $f : 2^\omega \rightarrow 2^\omega$ on Cantor space shows that it encodes a *finite prefix property*—this means that a machine can compute $f(p)$ to arbitrary precision after consuming a finite amount of bits of p in finite time when f is continuous.

In order to relate the machine-model view to a topology so we can define a *qcb₀* space, we will need a notion of an *admissible representation*. A representation δ_X of X is *admissible* if for any other representation δ'_X of X, $qcb₀$ stands for a $T₀$ quotient of a countably based space.
the identify function on X has a continuous realizer \cite[Battenfeld et al., 2007, Defn. 3.10].

Definition 1.8. A qcb$_0$ space is a represented space (X, δ_X) with admissible representation δ_X.

The topology is the quotient topology (or final topology) induced by the representation δ_X. If X and Y are qcb$_0$ spaces, then the topologically continuous functions between them coincide with those that have continuous realizers \cite[Battenfeld et al., 2007, Cor. 3.13], which gives the same characterization as an admissible represented space. We give two examples of qcb$_0$ spaces to illustrate the corresponding realizers and topologies.

Example 1.9. (S, δ_S) is a qcb$_0$ space. It has underlying set $S = \{\bot, \top\}$ and representation $\delta_S(\bot) = 0^\omega$ and $\delta_S(\top) = p$ for $p \neq 0^\omega$. In particular, this encodes the notion of semi-decidability—a Turing machine semi-decides that a proposition holds (encoded as \top) only if it eventually outputs a non-zero bit. The space S is known as Sierpinski space, which has open sets $\{\emptyset, \{\top\}, \{\bot, \top\}\}$.

Example 1.10. Let (X, d, S) be a computable metric space. Then, $(X, \delta_{\text{Metric}})$ is a qcb$_0$ space with admissible representation δ_{Metric} that uses fast Cauchy sequences as names. More concretely, $(\delta_{\mathbb{Q}}(w_n))_{n \in \mathbb{N}} \rightarrow \delta_{\text{Metric}}(p)$ when $\delta(p) = \langle w_1, w_2, \ldots \rangle$. As a special case, $(\mathbb{R}, \delta_{\mathbb{R}})$ is a represented space, where $\delta_{\mathbb{R}}$ is a representation that uses fast Cauchy sequences of rationals as names.

Topology to order The next piece of structure topological domain theory imposes is the order-theoretic aspect. The idea is to use the standard interpretation of recursive functions as the least upper bound of an ascending chain of the approximate functions obtained by unfolding. Because topological domain theory takes the topology as primary and the order as secondary, this task requires some additional work.

Recall that we can convert a topological space into a preordered set via the specialization preorder, which orders $x \sqsubseteq y$ if every open set that contains x also contains y. We write S to convert a topological space into a preordered set. Intuitively, $x \sqsubseteq y$ if x contains less information than y. For a metric space, we can always find an open ball that separates two distinct points x and y (because the distance between two distinct points is positive). Hence, the specialization preorder of a metric space always gives the discrete order (i.e., information ordering), and hence degenerately, a CPO.

Definition 1.11 \cite[Battenfeld et al., 2007, Defn. 5.1]. A qcb$_0$ space is called
a topological predomain if every ascending chain \((x_i)_{i \in \mathbb{N}}\) (with respect to the specialization preorder \(\sqsubseteq\)) has an upper bound \(x\) such that \((x_i)_{i \in \mathbb{N}} \to x\) (with respect to its topology).

Thus, we see in the definition that a topological predomain (1) builds off of a \(qcb_0\) space and (2) ensures that least upper bounds of increasing chains exist. The former condition provides the topology and theory of effectivity while the latter condition prepares for modeling least fixed-points. The following provides a useful characterization of \(qcb_0\) spaces that relates the topology back to the order.

Definition 1.12 ([Battenfeld et al., 2007, Defn. 5.3]). A topological space \((X, \mathcal{O}(X))\) is a monotone convergence space if its specialization order is a CPO and every open is Scott open.

Proposition 1.13 ([Battenfeld et al., 2007, Prop. 5.4]). A \(qcb_0\) space is a topological predomain iff it is a monotone convergence space.

Hence, we see that the Scott topology is in general finer than the topology associated with a topological predomain. Analogous to standard domain theory, a topological predomain is called a topological domain if it has least element, written \(\bot\), under its specialization order ([Battenfeld et al., 2007, Defn. 5.6]).

We look at the relation between order and topology more closely through a series of examples below.

Example 1.14. Consider the discrete CPO \((\mathbb{N}, \sqsubseteq_{\text{discrete}})\) with discrete ordering \(\sqsubseteq_{\text{discrete}}\), i.e., \(n \sqsubseteq_{\text{discrete}} m\) if \(n = m\). The Scott topology on this CPO gives the discrete topology, i.e., \(\mathcal{O}(\mathbb{N}) = \{\{n\} \mid n \in \mathbb{N}\}\). The specialization preorder applied to the resulting topology gives back the original CPO. Thus, we additionally see that the topological predomain coincides with the CPO.

Example 1.15. Consider the CPO \((\{[a, 1) \mid a \in \mathbb{R}\} \cup \{[0, 1]\}, \subseteq)\) with ordering given by set inclusion. The Scott topology on this CPO gives the lower topology, i.e., \(\mathcal{O}([0, 1]) = \{(a, 1) \mid a \in [0, 1)\} \cup \{[0, 1]\}\). Like the previous example, the specialization preorder applied to the resulting topology gives back the original CPO. Hence, the topological domain also coincides with the CPO.

In the two examples above, we saw instances where the order and topology coincide. In the next two examples, we will see cases where they differ, thus highlighting differences between CPOs and topological (pre)domains.
An Application of Computable Distributions...

(Categorical structure)

<table>
<thead>
<tr>
<th>Construction</th>
<th>(D \times E)</th>
<th>(D \Rightarrow E)</th>
<th>(D + E)</th>
<th>(D \otimes E)</th>
<th>(D \Rightarrow E)</th>
<th>(D \oplus E)</th>
<th>(D \bot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>TD</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>TD(_!)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

(LFP property) Every continuous endofunction on a topological domain has a least fixed-point (Battenfeld et al., 2007, Thm. 5.7).

Example 1.16. The reals \(\mathbb{R} \) with Euclidean topology is a metric space, and hence, the specialization preorder gives a discrete CPO \((\mathbb{R}, \sqsubseteq_{\text{discrete}})\). However, the Scott topology of the resulting discrete CPO is the discrete topology. Hence, the topologies do not coincide.

Example 1.17. The Scott continuous functions \(\mathbb{R} \Rightarrow_{\text{CPO}} \mathbb{R} \) contain all functions, which is different from the space of continuous functions \(\mathbb{R} \Rightarrow_{\text{TD}} \mathbb{R} \) between topological predomains. We will subscript function space \(\Rightarrow \) with the appropriate category when it is not clear from context which function space we are referring to, as in this example.

The last example concerns modeling divergence for reals.

Example 1.18. The partial reals \(\tilde{\mathbb{R}} \) (e.g., see Escardó (1996)) can be modeled as (closed) intervals \([l, u]\) ordered by reverse inclusion where \(l \) is a lower-real and \(u \) is an upper-real. The subspace of the maximal elements yields the familiar Euclidean topology. Note that \(\tilde{\mathbb{R}} \bot \neq \mathbb{R} \bot \).

Categorical structure We end by summarizing the categorical structure of topological domains (Figure 2) applicable to giving semantics to probabilistic programs. In short, topological (pre)domains possess essentially the same categorical structure as their CPO counterparts. Hence, we will be able to give semantics to programming languages using topological domains in much the same way that we use CPOs.

The relevant categories include \(\text{TP} \) (topological predomains and continuous functions), \(\text{TD} \) (topological domains and continuous functions), \(\text{QCB} \) (category with \(\text{qcb} \) spaces as objects and continuous functions as morphisms) (Battenfeld et al., 2007, Thm. 5.5), and \(\text{QCB} _! \) (Battenfeld et al., 2007, Thm. 5.9).
TD: (topological domains and strict continuous functions) We will use the notation below for categorical constructions with the usual semantics.

(Lift) D_{\perp} lifts a (pre)domain; the corresponding operations include lifting $\lceil \cdot \rceil : D \Rightarrow D_{\perp}$ and unlifting $\lceil \cdot \rceil : D_{\perp} \Rightarrow D$ for D (if $\lceil d \rceil = d$ and undefined otherwise).

(Product) We write $D \times E$ for products ($D \otimes E$ for smash products); the corresponding operations include first projection $\pi_1 : D \times E \Rightarrow D$ and second projection $\pi_2 : D \times E \Rightarrow E$.

(Function) We write $D \Rightarrow E$ for continuous functions ($D \Rightarrow E$ for strict continuous functions); the corresponding operation includes evaluation $\text{eval} : (D \Rightarrow E) \times D \Rightarrow E$.

We also have the usual derived functions with the expected semantics for lifting $\text{lift}_C : (D \Rightarrow E) \Rightarrow (D \Rightarrow E_{\perp})$ and lift $D : (D \Rightarrow E_{\perp}) \Rightarrow (D \perp \Rightarrow E_{\perp})$, pairing $\langle \cdot , \cdot \rangle : (D \Rightarrow E) \times (D \Rightarrow F) \Rightarrow (D \Rightarrow E \times F)$, and uncurrying $\text{uncurry} : (D \Rightarrow E \Rightarrow F) \Rightarrow (D \times E \Rightarrow F)$ (and currying).

4.2 Sampling

As a reminder, the library implementation converts an input bit-stream into a sample in the desired space. Hence, we begin by encoding the sampling implementation of distributions from the library as a topological domain.

Define an (endo)functor S that sends a topological predomain D to a sampler on D_{\perp} and a morphism to one that composes with the underlying sampler. Then, the topological domain $S(D)$ is a sampler producing values in the lifted topological domain D_{\perp}. We write $\perp(f)$ to indicate the application of the lift functor \perp to a morphism f.

Proposition 1.19. The functor S defined as

\[
S(D : TP) \triangleq 2^\omega \Rightarrow D_{\perp}
\]
\[
S(f : D \Rightarrow E) \triangleq s \mapsto \perp(f) \circ s ,
\]

is well-defined, where 2^ω is the topological predomain equipped with the Cantor topology.

The least element is one that maps all bit-streams to \perp. Next, we define

1. TD: (1) is countably complete (limits inherited from QCB), (2) has countable coproducts, and (3) \oplus and \otimes (with S as unit) provides symmetry monoidal closed structure on TD. (Battenfeld et al., 2007, Thm. 6.1, Thm. 6.2, Prop. 6.4).

11 A smash product $D \otimes E$ identifies the least element of D with the least element of E.

12 We include sums $(D + E)$ and coalesced sums $(D \oplus E)$ for completeness. Similar to a smash product, a coalesced sum $D \oplus E$ identifies the least element of D with the least element of E.

13
three operations on samplers. The first operation creates a sampler that ignores its input bit-randomness and always returns d. In the definition, we use a function $\text{const} : D \Rightarrow (E \Rightarrow D)$ that produces a constant function.

\[
\text{det} : D \Rightarrow S(D) \\
\text{det}(d) = \text{const}([d])
\]

The second operation splits an input bit-stream u into the bit-streams indexed by the even indices u_e and the odd indices u_o. Note that if u is a sequence of independent and identically distributed bits, then both u_e and u_o will be as well.

\[
\text{split} : 2^\omega \Rightarrow 2^\omega \times 2^\omega \\
\text{split}(u) = (u_e, u_o)
\]

The third operation sequences two samplers.

\[
\text{samp} : S(D) \times (D \Rightarrow S(E)) \Rightarrow S(E) \\
\text{samp}(s, f) = \text{uncurry}(\text{lift}_D(f)) \circ (s \circ \pi_1, \pi_2) \circ \text{split}
\]

It splits the input bit-randomness and runs the sampler s on one of the bit-streams obtained by splitting to produce a value. That value is fed to f, which in turn produces a sampler that is run on the other bit-stream obtained by splitting.

4.3 Valuations and a Probability Monad

Our goal now is encode distributions in the framework of topological domains. Once we have done so, we can interpret distribution terms in the library as elements of the appropriate topological domain. The relevant idea is the notion of a valuation.

Valuations and measures A valuation shares many of the same properties as a measure, and hence, can be seen as a topological variation of distribution.

Definition 1.20. A valuation $\nu : \mathcal{O}(X) \rightarrow [0, 1]$ is a function that assigns to each open set of a topological space X a probability such that it is (1) strict ($\nu(\emptyset) = 0$), (2) monotone ($\nu(U) \leq \nu(V)$ for $U \subseteq V$), and (3) modular ($\nu(U) + \nu(V) = \nu(U \cup V) + \nu(U \cap V)$ for every open U and V).

One key difference between valuations and measures is that valuations are not required to satisfy countable additivity. Indeed, countable additivity
is perhaps one of the defining features of a measure. We can rectify this situation for valuations by restricting to the \(\omega \)-continuous valuations. As a reminder, a valuation \(\nu \) is called \(\omega \)-continuous if
\[
\nu(\bigcup_{n \in \mathbb{N}} V_n) = \sup_{n \in \mathbb{N}} \nu(V_n)
\]
for \((V_n)_{n \in \mathbb{N}}\) an increasing sequence of opens. Hence, the countable additivity of \(\mu \) encodes the \(\omega \)-continuous property. Importantly, note that every Borel measure \(\mu \) can be restricted to the lattice of opens, written \(\mu|_{\mathcal{O}(X)} \), resulting in an \(\omega \)-continuous valuation. Every Borel measure \(\mu \) on \(X \) can be restricted to an \(\omega \)-continuous valuation \(\mu|_{\mathcal{O}(X)} : [0, 1] \to \mathcal{CPO} \) (see (Schröder, 2007, Sec. 3.1)). Moreover, \(\mu \) is uniquely determined by its restriction to the opens \(\mu|_{\mathcal{O}(X)} \).

In other words, we can identify distributions on topological spaces with \(\omega \)-continuous valuations.

Encoding valuations The presence of topological and order-theoretic structure suggests two strategies for encoding valuations as topological domains. In the first approach, we would take a realizer point of view as every topological domain is also a \(qcb_0 \) space. Under this approach, we would (1) define an admissible representation of the space of opens \(\mathcal{O}(X) \), (2) define an admissible representation of the interval \([0, 1]\), and (3) verify that a representation of a valuation \(\mathcal{O}(X) \to [0, 1] \) using the canonical function space representation is admissible and properly encodes a valuation. In the second approach, we would take an order-theoretic point of view. Under this approach, we would (1) verify that the space of opens \(\mathcal{O}(X) \) is a topological domain, (2) verify that the interval \([0, 1]\) is a topological domain, and (3) verify that the continuous functions \(\mathcal{O}(X) \to [0, 1] \) encodes a valuation correctly. In either strategy, a common thread is that we need to encode the opens \(\mathcal{O}(X) \) and the interval \([0, 1]\). We start with the realizer perspective.

Let \(\mathcal{C}(X, S) \) be the space of continuous functions between the represented spaces \(X \) and \(S \). Let \([0, 1]_< \cong ([0, 1], \delta_<)\) be the represented space with representation \(\delta_< \) that represents \(r \in [0, 1] \) as all the rational lower bounds. Next, we define the opens \(\mathcal{O}(X) \) and the interval \([0, 1]\) for the order-theoretic perspective. Let \(\mathcal{O}_{\leq}(X) \cong (\mathcal{O}(X), \subseteq) \) be the lattice of opens (and hence a CPO) of a topological space \(X \) ordered by subset inclusion. Let \([0, 1]_\uparrow \cong ([0, 1], \leq)\) be the interval \([0, 1]\) ordered by \(\leq \). The next proposition shows that the realizer perspective and the order-theoretic perspective are equivalent.

Proposition 1.21.

(i) \([0, 1]_< \cong [0, 1]_\uparrow\) and

14 Note that the \(\omega \)-continuous condition encodes what it means for a function to be \(\omega \)-Scott continuous, i.e., an \(\omega \)-CPO continuous function.
(ii) \(\mathcal{C}(X, S) \cong \mathcal{O}^c(X) \) when \(X \) is an admissible represented space\(^{15}\)

The next proposition shows that the realizer and order-theoretic views are equivalent under the additional assumption that the base topological space is countably based.

Proposition 1.22. Let \((X, \mathcal{O}(X))\) be a countably based topological space.

(i) \(\mathcal{O}(X) \Rightarrow \text{cpo} \{[0, 1]^\uparrow\} \cong \mathcal{C}(\mathcal{O}(X), [0, 1]_<) \) and
(ii) \(\mathcal{O}(X) \Rightarrow \text{cpo} \{[0, 1]^\uparrow\} \cong \mathcal{O}^c(X) \Rightarrow \text{td} \{[0, 1]^\uparrow\} \)\(^{16}\)

Proposition 1.22 gives three equivalent views of a valuation as (1) a cpo continuous function, (2) a continuous map between represented spaces, and (3) a continuous function between topological domains. View (2) indicates that there is an associated theory of effectivity on valuations. We will use this view to give semantics to probabilistic programs.

Integration Similar to how one can integrate a measurable function with respect to a measure, one can integrate a lower semi-continuous function with respect to a valuation. Let \(X \) be a represented space and \(\mu \in \mathcal{M}_1(X) \), where \(\mathcal{M}_1(X) \) is the collection of Borel measures on \(X \) that have total measure 1.

Proposition 1.23. The integral of a lower semi-continuous function \(f \in \mathcal{C}(X, [0, 1]_<) \) with respect to a Borel measure \(\mu \)

\[
\int : \mathcal{C}(X, [0, 1]_<) \times \mathcal{M}_1(X) \to [0, 1]_<
\]

is lower semi-continuous (see [Schröder, 2007, Prop. 3.6]). In fact, it is even lower semi-computable (see [Schröder, 2004, Prop. 3.6] and [Hourup and Rojas, 2009, Prop. 4.3.1]).

The integral is defined in an analogous manner to the Lebesgue integral, i.e., as the limit of step functions on opens instead of measurable sets. The integral possesses many of the same properties, including Fubini and monotone convergence.

\(^{15}\) The second item is due to [Schröder, 2007, Thm. 3.3].

\(^{16}\) The first item is due to [Schröder, 2007, Sec. 3.1, Thm 3.5, Cor. 3.5]. For the second item, recall that every \(\omega \)-continuous pointed CPO with its Scott topology coincides with a topological domain [Battenfeld et al. 2007]. The least element is the valuation that maps every open set to 0.
Finally, we combine the results about valuations and integration to define a probability monad. We start with constructions for a sampling interpretation. Define the (endo)functor P on countably based topological predomains that sends an object D to the space of valuations on D and a morphism to one that computes the pushforward.

Proposition 1.24. The functor P defined as

$$P(D) \triangleq \mathcal{C}^\subseteq(D) \Rightarrow [0,1]^\uparrow$$

$$P(f : D \Rightarrow E) \triangleq \mu \mapsto \mu \circ f^{-1}.$$

is well-defined.

It is straightforward to check that P is a functor. We can construct a probability monad using the functor P.

Proposition 1.25. The triple (P, η, \succ) is a monad, where

$$\eta(x)(U) \triangleq 1_U(x)$$

$$(\mu \succ f)(U) \triangleq \int f_U \, d\mu$$

where $f_U(x) = f(x)(U)$.

It is largely straightforward to check that (P, η, \succ) is a monad. In the case of bind, we can check that the identities involving integrals holds via standard arguments (e.g., see Jones (1989)).

4.4 Realizability

Sections 4.1, 4.2, and 4.3 taken together provide enough structure for giving semantics to probabilistic programs. However, before seeing the semantics in action in a core language (Section 5), we explore another approach to (Type-2) computability based on realizability. As a reminder, we can use a concrete machine model (i.e., a Turing machine) or use an abstract machine (i.e., a PCA) to express Type-2 computability. We have largely taken the former approach throughout this chapter. In this section, we will consider the latter approach.

The primary reason for doing so is that we will obtain another perspective on computability (i.e., in addition to the topological and order-theoretic ones) that provides a constructive viewpoint. In particular, we will gain another view of what it means to “program” a computable distribution. Moreover, it is also possible to give semantics to programming languages directly using the realizability approach (e.g., see Longley (1995)). Hence, we will
gain another method of giving semantics in addition to the traditional order-theoretic one. In the rest of this section, our goal is to show that the base spaces and constructions that are useful for giving semantics to probabilistic programs with continuous distributions can be realized appropriately.

Overview The phrase we have in mind is: “Computability is the realizability interpretation of constructive mathematics” [Bauer (2005)]. The high-level idea is to encode familiar mathematical objects in an appropriate logic and derive computability as a consequence of having a sound interpretation. Programming up mathematical spaces and their operations will then correspond to encoding the space and their operations in the logic.

(Logic) The logic for our setting is elementary analysis (e.g., see [Lietz, 2004, Sec. 1.3.3]), called EL. EL extends an intuitionistic predicate logic with (1) Heyting arithmetic, (2) a sort for Baire space Baire for encoding continuum-sized objects, and (3) primitive-recursion and associated operators.

(Semantics) The semantics for this setting includes the category $\text{Asm}(K_2)$ of assemblies over Kleene’s second algebra K_2 (i.e., a PCA over Baire space) and the full subcategory $\text{Mod}(K_2)$ of modest sets over K_2. For more details on assemblies and modest sets, we refer the reader to the relevant literature (e.g., see Streicher (2008); Bauer (2000a); Birkedal (1999)). For our purposes, it suffices to recall that a modest set can be identified with a represented space and that an assembly is a represented space with a multi-representation. Hence, modest sets model data-types and assemblies model intuitionistic logic.

Because we take a constructive vantage point, we will need to check that the semantics induced by the relevant encodings of familiar mathematical objects in the logic coincides with the usual interpretation. For our purposes, this means checking that encodings of objects such as reals and distributions in EL produce the expected semantics. Towards this end, recall that we can associate a theory of effectivity with a space by defining it as a quotient of Baire space \mathbb{B}/\sim by a partial equivalence relation (PER) \sim. A quotient by a PER allows us to construct quotients and subsets of Baire space in one go. We recall the conditions required of the relation \sim for the constructive encoding to coincide with the classical interpretation below.

Definition 1.26 ([Lietz, 2004, Prop. 3.3.2]). We write \sim^* if

(RF conservative class) $\sim \in CC(r.f)$, i.e., antecedents are almost negative.
(Partial equivalence relation) $EL \vdash \text{per}(\sim)$, where

\[\begin{align*}
\text{per}(\sim) & \triangleq \text{sym}(\sim) \land \text{trans}(\sim) \\
\text{sym}(\sim) & \triangleq \forall \alpha \beta : \text{Baire}. \alpha \sim \beta \Leftrightarrow \beta \sim \alpha \\
\text{trans}(\sim) & \triangleq \forall \alpha \beta \gamma : \text{Baire}. \alpha \sim \beta \rightarrow \beta \sim \gamma \rightarrow \alpha \sim \gamma
\end{align*}\]

(Stability) $EL \vdash \forall x y : \text{Baire}. \neg \neg (x \sim y) \rightarrow x \sim y$

Now we recall a sufficient condition for the constructive interpretation to coincide with the classical interpretation.

Proposition 1.27 ([Lietz, 2004, Prop. 3.3.2]). If \sim^*, then the interpretations of B/\sim in the categories $\text{Asm}(K_2)$ and $\text{Asm}_t(K_2)$ (i.e., the truth or classical interpretation) yield computably equivalent realizability structures.

Encodings Before proceeding to the encodings of the sets of interest in EL, we define two enumerations that will be useful for constructing the encodings. Let $\pi_1(n, m) = n$ and $\pi_2(n, m) = m$ so that they are pairing functions on naturals (e.g., Cantor pairing function). We also overload the notation $\langle \alpha, \beta \rangle$ to pair $\alpha \in B$ and $\beta \in B$.

Integers Encode the integers as

\[Z = \mathbb{N} \times \mathbb{N} / =_{\mathbb{N}}\]

where $\langle a, b \rangle =_{\mathbb{N}} \langle c, d \rangle$ if $a - d = c - b$ (e.g., as in [Bauer, 2000a, Sec. 5.5.1]).

In words, we can think of an integer as a difference of two naturals. We write Int to refer to the enumeration on $\mathbb{N} \times \mathbb{N}$.

Rationals Encode the rationals as

\[Q = Z \times (\mathbb{N}\setminus\{0\}) / =_{\mathbb{Q}}\]

where $\langle p, q \rangle =_{\mathbb{Q}} \langle s, t \rangle$ if $p \cdot t = s \cdot q$ (e.g., as in [Bauer, 2000a, Sec. 5.5.1]).

In words, we can think of a rational as a ratio of an integer and a non-negative natural. We write Rat to refer to the enumeration on $\mathbb{Z} \times (\mathbb{N}\setminus\{0\})$.

We write \leq_Q and $<_Q$ to implement \leq and $<$ respectively on rationals.\(^{17}\)

Non-negative rationals Encode the non-negative rationals similarly to the rationals, where we replace \mathbb{Z} with \mathbb{N}. We write NnRat to refer to the enumeration on $\mathbb{N} \times (\mathbb{N}\setminus\{0\})$. We write $<_{\mathbb{Q}^+}$ to implement $<$ on the non-negative rationals.

\(^{17}\) Note that we have that $\langle p, q \rangle <_{\mathbb{Q}} \langle s, t \rangle$ if $p \cdot t < s \cdot q$ (e.g., as in [Bauer, 2000a, Sec. 5.5.1]).
We now encode the base spaces as quotients of Baire space. In defining
the quotient \(\sim \), it is helpful to recall the encoding of the space first. For
example, a lower real is an encoding of a real that enumerates all of its ra-
tional lower bounds. Hence, two lower reals will be related if their encodings
enumerate the same lower bounds. As another example, we can encode reals
as a fast Cauchy sequences. Hence, two reals will be related if their encodings
are suitably close to one another. We summarize useful quotient encodings of base spaces below.

Proposition 1.28.

(Sierpinski) Let \(\alpha \sim_S \beta \) if \((\forall n : \text{Nat}. \alpha n = 0) \leftrightarrow (\forall n : \text{Nat}. \beta n = 0) \).

(Lower real) Let \(\alpha \sim_{\mathbb{R}_<} \beta \) if \(\forall q : \text{Rat}. (\forall n : \text{Nat}. q < \alpha n) \leftrightarrow (\forall n : \text{Nat}. q < \beta n) \).

(Lower non-negative real) Let \(\alpha \sim_{\mathbb{R}_\leq} \beta \) if \(\forall q : \text{NnRat}. (\forall n : \text{Nat}. q < q+ \alpha n) \leftrightarrow (\forall n : \text{Nat}. q < q+ \beta n) \).

(Upper real) Let \(\alpha \sim_{\mathbb{R}_>} \beta \) if \(\forall q : \text{Rat}. (\forall n : \text{Nat}. \alpha n < \beta n) \leftrightarrow (\forall n : \text{Nat}. \beta n < q) \).

(Lifted partial real) Let \(\langle \alpha_1, \alpha_u, \alpha_<, \alpha_> \rangle \sim_{\mathbb{R}_>} \langle \beta_1, \beta_u, \beta_<, \beta_> \rangle \) if \(\alpha_1 \sim_{\mathbb{R}_<} \beta_1 \wedge \alpha_u \sim_{\mathbb{R}_>} \beta_u \wedge \alpha_< \sim_{\mathbb{R}_<} \beta_< \wedge \alpha_> \sim_{\mathbb{R}_>} \beta_> \).

(Real) Let \(\alpha \sim_{\mathbb{R}} \beta \) if \(\forall n : \text{Nat}. |\alpha n - \beta n| \leq 2^{-n+2} \).

We have \(\sim^*_S, \sim^*_{\mathbb{R}_<}, \sim^*_{\mathbb{R}_\leq}, \sim^*_{\mathbb{R}_>, \sim^*_{\mathbb{R}}, \text{and } \sim^*_R \).

It is largely straightforward to check that \(\sim^* \) holds\(^{18} \). Next, we state that
semantic constructs can be encoded as quotients of Baire space as well.

Proposition 1.29. Suppose \(\sim^*_X \) and \(\sim^*_Y \).

(Lift) Let \(\langle \alpha_C, \alpha_X \rangle \sim_{\perp} \langle \beta_C, \beta_X \rangle \) if \(\alpha_C \sim_S \beta_C \wedge \alpha_X \sim_X \beta_X \).

(Product) Let \(\langle \alpha_X, \alpha_Y \rangle \sim_{X \times Y} \langle \beta_X, \beta_Y \rangle \) if \(\alpha_X \sim_X \beta_X \wedge \alpha_Y \sim_Y \beta_Y \).

(Function) Let \(\alpha \sim_{X \rightarrow Y} \beta \) if \(\forall \gamma : \text{Baire}, \alpha | \gamma \sim_Y \beta | \gamma \) where \(\alpha | \gamma \) applies \(\alpha \) to \(\gamma \) (in \(I_2 \)).

We have \(\sim^*_\perp, \sim^*_{X \times Y}, \sim^*_X \rightarrow Y \).

It is straightforward to check that \(\sim^* \) for the \(\sim \) defined above.

We end by encoding valuations as quotients of Baire space. First, we need
an enumeration of the open sets of a topological space. For a topological
space \((X, \mathcal{O}(X)) \), we can encode the collection of open sets as the function
space \(X \rightarrow S \). As the measure of an open set is lower-semi computable

\(^{18}\) For Sierpinski, see [Lietz, 2004, Defn. 3.2.4]. For reals, see [Bauer, 2000b, Sec. 5.5.2]. It is
also useful to recall the notion of a negative formula [Bauer, 2000b, pg. 92] for checking the
stability of \(\sim \).
(Proposition 4.3), a valuation can be encoded as an enumeration of pairs of a basic open and a non-negative lower real. For a countably based topological space with basis $\mathcal{B}(X)$, we have $\mathcal{B}(X) \cong \mathbb{N}$; hence, we can code a valuation as a sequence of non-negative lower reals.

Proposition 1.30. Let $\langle \alpha_1, \alpha_2, \ldots \rangle \sim_{\mathcal{V}(X)} \langle \beta_1, \beta_2, \ldots \rangle$ if $\forall n : \mathbb{N}. \alpha_n \sim_{\mathbb{R}^+} \beta_n$. Then $\sim^*_\mathcal{V}(X)$.

Summary In summary, one view of what we have just seen is that we can use EL as a “programming language” (i.e., a constructive logic as opposed to Haskell) for coding up mathematical structures relevant for probabilistic programs that have a notion of effectivity associated with them. In particular, the witnesses in the semantics of EL are given by elements of a PCA and modest sets over \mathcal{K}_2 can be identified with represented spaces (see (Battenfeld et al., 2007, Sec. 8)).

4.5 Alternative Approaches

Probabilistic programs have a long history, and indeed, many structures have been proposed for modeling their semantics. Naturally, the choice of mathematical structure affects the language features that we can model. We close this section by reviewing a few of these alternative approaches as a point of comparison to the perspective given here that emphasizes Type-2 computability. We will focus on denotational approaches. There are also operational approaches to modeling the semantics of probabilistic programs (e.g., see Park et al. (2003); Lago and Zorzi (2012)).

One natural idea is to extend semantics based on CPOs to the probabilistic setting by putting distributions on CPOs. Saheb-Djahromi (1978) develops a probabilistic version of LCF by considering distributions on CPOs corresponding to base types (i.e., booleans and naturals). Saheb-Djahromi also gives operational semantics as a Markov chain (described as a transition matrix) and shows that the operational semantics is equivalent to the denotational semantics. Jones (1989), in her seminal work, develops the theory of valuations on CPOs to further the study of distributions on CPOs via a probabilistic powerdomain \mathcal{P}. The probabilistic powerdomain is not closed under the function space; consequently, Jones interprets the function space $D \Rightarrow E$ probabilistically as $D \Rightarrow \mathcal{P}(E)$ (not $\mathcal{P}(D) \Rightarrow \mathcal{P}(E)$).

Instead of taking order-theoretic structure as primary and extending it with probabilistic concepts, another idea is to take the probabilistic structure as primary and derive structure that models programming language
constructs (e.g., order-theoretic structure to model recursion). Kozen (1981) takes a structure amenable for modeling probability as primary (i.e., Banach spaces) and imposes order-theoretic structure. This approach supports standard continuous distributions, although it does not support higher-order functions. In addition to the distributional semantics, Kozen also gives a sampling semantics and shows it equivalent to the distributional semantics.

One can also use measure-theoretic structure directly. Panangaden (1999) identifies a category of stochastic relations and shows how to use it to give denotational semantics to Kozen’s first-order while language. The category has measurable spaces as objects and probability kernels as morphisms. Panangaden identifies (partially) additive structure in this category and uses it to interpret fix-points for Kozen’s while language. Borgström et al. (2011) also interpret a type as a measurable space and use it to give denotational semantics to a first-order language without recursion based on measure transformers. They also show how to compile this language into a factor graph, which supports inference as well as provides an operational semantics.

Another interesting approach considers alternatives to a measure-theoretic treatment of probability, but still considers the probabilistic structure as primary. Heunen et al. (2017) develop the theory of quasi-Borel spaces, which importantly, form a Cartesian closed category and show how quasi-Borel spaces can be used to model a higher-order language without recursion.

5 A Semantics for a Core Language

What does a semantics for a core language look like? Our goal in this section is to use the mathematical structures (i.e., topological domains) we reviewed in the previous section to model a PCF-like language extended with reals and continuous distributions called λ_{CD}. We begin by introducing the syntax and statics of λ_{CD} (Section 5.1). As we might expect, the language features that we can model are restricted to the structure of the relevant topological domains. For instance, as we only define a probability monad on countably based spaces, λ_{CD} will be restricted to supporting only distributions on countably based spaces. This includes distributions on reals and products of countably based spaces, but does not include function spaces (although the language itself contains higher-order functions). Next, we give both distributional and (algorithmic) sampling semantics to λ_{CD} (Section 5.2). This illustrates more concretely the connection between the semantics and the library implementation of computable distributions. The

\[19\] The category of measurable spaces is not Cartesian closed.
The language λ_{CD} extends a PCF-like language with products, reals (shaded), and distributions (shaded) using a probability monad. The structure of the semantics follows the usual one for PCF. Finally, we can use the core language and its semantics to resolve the semantic issues we raised when we sketched a library for computable distributions (Section 5.3).

5.1 Syntax and Statics

Syntax The language λ_{CD} extends a PCF-like language with reals and distributions (Figure 3). The terms on lines PCF-1 and PCF-2 are standard PCF terms. The terms on the line marked *products* extend PCF with the usual constructions for pairs; (M, N) forms a pair of terms M and N, $\text{fst} M$ takes the first projection of the pair M, and $\text{snd} M$ takes the second projection of the pair M. The terms on the line marked *reals* adds syntax for (1) constant reals r and (2) the application of primitive real functions rop. The terms on the line marked *distributions* adds syntax for (1) primitive distributions dist and (2) return $\text{return} M$ and bind $x \leftarrow M ; N$ for an appropriate probability monad.

Statics Like PCF, λ_{CD} is a typed language. In addition to PCF types (i.e., Nat and $\tau \rightarrow \tau$), λ_{CD} includes the type of products ($\tau \times \tau$), reals (Real), and distributions ($\text{Dist} \tau$). Figure 4 summarizes the type-system for λ_{CD}. The expression typing judgement $\Gamma \vdash M : \tau$ is parameterized by a context Ψ (omitted in the rules) that contains the types of primitive distributions and functions. The typing rules for the fragments marked PCF-1, PCF-2, and products is standard. The typing rules for the fragments marked real and distributions are not surprising, but we go over them as the syntactic constructs are less standard.

As expected, constant reals r are assigned the type Real. Primitive operations on reals (rop) have the type assigned to them in Υ.

For expressions that operate on distributions, the judgement $\vdash_D \tau$ addi-
Well-formed distribution type

$$\vdash D \tau$$

$$\vdash D \text{Nat}$$
$$\vdash D \text{Real}$$
$$\vdash D \tau_1 \times \tau_2$$

Expression typing judgement

$$\Gamma \vdash M : \tau$$

$$\Gamma \vdash 0 : \text{Nat}$$
$$\Gamma \vdash \text{succ} : \text{Nat} \to \text{Nat}$$
$$\Gamma \vdash \text{pred} : \text{Nat} \to \text{Nat}$$

$$\Gamma \vdash \text{rop} : \tau$$

$$\Gamma \vdash \text{if0} \ M_1 \ M_2 \ M_3 : \tau$$

$$\Gamma \vdash x : \tau$$
$$\Gamma \vdash \lambda x : \tau_1. \ M : \tau_1 \to \tau_2$$

$$\Gamma \vdash \text{fix} \ M : \tau$$

$$\Gamma \vdash \text{snd} \ M : \tau_2$$

$$\Gamma \vdash \text{dist} : \text{Dist} \tau$$
$$\Gamma \vdash \text{return} \ M : \text{Dist} \tau$$

Figure 4 The type-system for λCD. The expression typing judgement is parameterized by a context Ψ, which contains that types of primitive distributions and functions. The typing rules for reals and distributions are shaded.

tionally enforces that the involved types are well-formed. The distribution type $\text{Dist} \tau$ is well-formed if the space denoted by τ supports the operations required of a computable metric space. This includes the natural type Nat, the real type Real, and products of well-formed types $\tau_1 \times \tau_2$.

Given a term M that has a well-formed type, the construct $\text{return} \ M$ corresponds to return in a probability monad and returns a point-mass centered at M. The typing rule for $x \leftarrow M ; N$ is the usual one for bind in a probability monad. The rule first checks that M has type $\text{Dist} \tau_1$ and that τ_1 is well-formed. Next, the rule checks that N under a typing context

\[20\] We can also support distributions on distributions and distributions on any other countably-based space in general, but restrict our attention to these types for simplicity.
\[
\begin{align*}
\mathcal{V}[\text{Nat}] & \triangleq \mathbb{N}_\bot \\
\mathcal{V}[\tau_1 \rightarrow \tau_2] & \triangleq (\mathcal{V}[\tau_1] \Rightarrow \mathcal{V}[\tau_2])_\bot \\
\mathcal{V}[\tau_1 \times \tau_2] & \triangleq (\mathcal{V}[\tau_1] \times \mathcal{V}[\tau_2])_\bot
\end{align*}
\]

\[
\mathcal{V}[\text{Real}] \triangleq \mathbb{R}_\bot \\
\mathcal{V}[\text{Dist } \tau] \triangleq \{(s, \text{psh}_\tau(s)) \mid s \in \mathcal{S}(\mathcal{V}[\tau])\}
\]

Figure 5 The interpretation of types (additional constructs are shaded). Note that we are using a call-by-name interpretation.

extended with \(x : \tau_1\) has type \(\text{Dist } \tau_2\) and that \(\tau_2\) is well-formed. The result is an expression of type \(\text{Dist } \tau_2\).

5.2 Semantics

Interpretation of types The interpretation of types \(\mathcal{V}[\tau] : \text{TD}\) interprets a type \(\tau\) as a topological domain and is defined by induction on types (Figure 5). The interpretation of types is similar to what one obtains from a standard CPO call-by-name interpretation.

For example, the interpretation of Nat lifts the topological domain \(\mathbb{N}\). This is similar to the CPO interpretation of naturals as the lifted naturals. The interpretation of functions and products are the usual call-by-name interpretations, the difference being that we use the topological domain counterparts instead. The interpretation of the type of reals Real is a lifted partial real \(\mathbb{R}_\bot\). The interpretation of the type of distributions Dist \(\tau\) is a pair of a sampler and a distribution such that the sampler realizes the distribution. The (continuous) function psh\(_\tau\) computes the pushforward and relates the sampler with the valuation on a space denoted by \(\tau\) (i.e., \(\text{psh}_\tau(s) \in \mathcal{P}(\mathcal{V}[\tau])\)). The well-formed distribution judgement \(\vdash_D \tau\) ensures that the probability monad \(\mathcal{P}\) is applied to only the countably based topological domains.

Denotation function The expression denotation function \(\mathcal{E}[\Gamma \vdash M : \tau] : \mathcal{V}[\Gamma] \Rightarrow \mathcal{V}[\tau]\) is defined by induction on the typing derivation and is summarized in Figure 6. It is parameterized by a global environment \(\Upsilon\) that interprets constant reals \(r\), primitive functions (rop), and primitive distributions dist. We describe the denotation function in three steps. First, we clarify the conditions on the global environment. Second, we walk though the semantics and connect it with the library implementation, with a particular focus on the relation between a sampling and distributional view of
\[\mathcal{E}[\Gamma \vdash x : \tau] \triangleq \pi_x \]
\[\mathcal{E}[\Gamma \vdash \text{zero} : \text{Nat}] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(\text{zero}) \]
\[\mathcal{E}[\Gamma \vdash \text{succ} : \text{Nat} \to \text{Nat}] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(\text{succ}) \]
\[\mathcal{E}[\Gamma \vdash \text{pred} : \text{Nat} \to \text{Nat}] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(\text{pred}) \]
\[\mathcal{E}[\Gamma \vdash \lambda x : \tau_1. M : \tau_1 \to \tau_2] \triangleq \text{lift}_C \circ \text{curry}(\mathcal{E}[\Gamma, x : \tau_1 \vdash M : \tau_2]) \]
\[\mathcal{E}[\Gamma \vdash M_1 M_2 : \tau_2] \triangleq \text{eval} \circ (\text{unlift}(\mathcal{E}[\Gamma \vdash M_1 : \tau_1 \to \tau_2])), \mathcal{E}[\Gamma \vdash M_2 : \tau_1]) \]
\[\mathcal{E}[\Gamma \vdash \text{if0} M_1 M_2 M_3 : \tau] \triangleq \text{if0} \circ \mathcal{E}[\Gamma \vdash M_1 : \text{Nat}], \mathcal{E}[\Gamma \vdash M_2 : \tau], \mathcal{E}[\Gamma \vdash M_3 : \tau]) \]
\[\mathcal{E}[\Gamma \vdash \text{fix} M : \tau] \triangleq \text{fix} \circ \text{unlift}(\mathcal{E}[\Gamma \vdash M : \tau \to \tau]) \]
\[\mathcal{E}[\Gamma \vdash (M_1, M_2) : \tau_1 \times \tau_2] \triangleq \text{lift}_C \circ (\mathcal{E}[\Gamma \vdash M_1 : \tau_1], \mathcal{E}[\Gamma \vdash M_2 : \tau_2]) \]
\[\mathcal{E}[\Gamma \vdash \text{fst} \Gamma \vdash M : \tau_1] \triangleq \pi_1 \circ \text{unlift} \circ \mathcal{E}[\Gamma \vdash M : \tau_1 \times \tau_2] \]
\[\mathcal{E}[\Gamma \vdash \text{snd} \Gamma \vdash M : \tau_2] \triangleq \pi_2 \circ \text{unlift} \circ \mathcal{E}[\Gamma \vdash M : \tau_1 \times \tau_2] \]
\[\mathcal{E}[\Gamma \vdash r : \text{Real}] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(r) \]
\[\mathcal{E}[\Gamma \vdash \text{rop} : \Psi(\text{rop})] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(\text{rop}) \]
\[\mathcal{E}[\Gamma \vdash \text{dist} : \text{Dist} \tau] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(\text{dist}) \]
\[\mathcal{E}[\Gamma \vdash \text{return} M : \text{Dist} \tau] \triangleq (\text{det} \circ f \circ \eta \circ f) \text{ where } f = \mathcal{E}[\Gamma \vdash M : \tau] \]
\[\mathcal{E}[\Gamma \vdash x \leftarrow M_1 ; M_2 : \text{Dist} \tau_2] \triangleq (\text{samp} \circ \langle \pi_1 \circ f, \pi_1 \circ \text{curry}(g) \rangle), (\pi_2 \circ f \circ g)) \]

\[\text{where } f = \mathcal{E}[\Gamma, x : \tau_1 \vdash M_1 : \tau_2] \]
\[\text{where } g = \mathcal{E}[\Gamma, x : \tau_1 \vdash M_2 : \tau_2] \]

Figure 6 The denotational semantics of λ_{CD} is given by induction on the typing derivation (semantics of additional constructs are shaded). The structure of the semantics is similar to one where we use CPOs. The function π_x projects the variable x from the environment.

probabilistic programs. Third and finally, we put the semantics together and show that it is well-defined.

Global environment To ensure that we do not introduce non-computable elements into λ_{CD} such as via operations on reals rop, the global environment Υ should be well-formed. We list the well-formedness conditions below. As shorthand, we will put a bar over constants to represent the semantic value obtained from a global environment lookup (e.g., $\Upsilon(r) = \bar{r}$) to distinguish the semantic value from the syntax.
(real-wf) For any $r \in \text{dom}(\Upsilon)$, $\Upsilon(r)$ is the realizer of a real \tilde{r}.

(dist-wf) For any $\text{dist} \in \text{dom}(\Upsilon)$, $\Upsilon(\text{dist})$ is the name of a pair $\overline{\text{dist}}$ that realizes a sampler and the corresponding distribution.

(rop-wf) For any $\text{rop} \in \text{dom}(\Upsilon)$, the corresponding semantic function rop is strict and continuous on its domain.

Denotation function and sampling The denotation of terms corresponding to the PCF fragment are standard. Hence, we will focus on the constructs λ_{CD} introduces. The denotation of a constant real r is a global environment lookup.

$$\mathcal{E}[\Gamma \vdash r : \text{Real}] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(r)$$

By the well-formedness of the global environment, $\Upsilon(r)$ will have a realizer. Likewise, the denotation of a primitive function on reals rop is a global environment lookup and corresponds to a representation of the code implementing the function.

$$\mathcal{E}[\Gamma \vdash \text{rop} : \text{Real}^n \rightarrow \text{Real}] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(\text{rop})$$

The well-formedness of the global environment Υ enforces these conditions. Our next task is to explain the denotation of distribution constructs in λ_{CD}.

As a reminder, the interpretation of types is a pair of a sampler and the distribution that it realizes. As we will see shortly, the semantics of the sampling component and the semantics of the distribution component do not depend on one another (besides the fact that we want the distribution to be realized by the sampler). Hence, we could have given two different semantics and related them. Nevertheless, in this form, we will obtain that the valuation is the pushforward along the sampler, and consequently, make the connection between what is given by a distributional semantics and what was implemented in the sampling library. We walk through the distribution constructs now.

The denotation of a constant primitive distribution dist is a global environment lookup. Note that the interpretation of $\text{Dist } \tau$ is a pair of a sampler and valuation so the lookup should also produce a pair.

$$\mathcal{E}[\Gamma \vdash \text{dist} : \text{Dist } \tau] \triangleq \text{lift}_C \circ \text{const} \circ \Upsilon(\text{dist})$$

The denotation of $\text{return } M$ produces a pair of a sampler that ignores the input bit-randomness and a point mass valuation centered at M.

$$\mathcal{E}[\Gamma \vdash \text{return } M : \text{Dist } \tau] \triangleq \langle \text{det } \circ f, \eta \circ f \rangle \text{ where } f = \mathcal{E}[\Gamma \vdash M : \tau]$$
The meaning of $x \leftarrow M : N$ also gives a sampler and a valuation.

$$\mathcal{E}[\Gamma \vdash x \leftarrow M_1 ; M_2 : \text{Dist } \tau_2] \triangleq \langle \text{samp} \circ (\pi_1 \circ f, \pi_1 \circ \text{curry}(g)), (\pi_2 \circ f) \triangleright (\pi_2 \circ g) \rangle$$

where $f = \mathcal{E}[\Gamma \vdash M_1 : \text{Dist } \tau_1]$ and $g = \mathcal{E}[\Gamma, x : \tau_1 \vdash M_2 : \tau_2]$. Under the sampling view, we use samp to compose the sampler obtained by $\pi_1 \circ f$ with the function $\pi_1 \circ g$. Under the valuation component, we reweigh $\pi_2 \circ g$ according to the valuation $\pi_2 \circ f$ using monad bind \triangleright from \mathcal{P}. We can check that the valuation given by the semantics is indeed the pushforward along the sampler.

Proposition 1.31 (Push). Let D and E be countably based topological pre-domains (qcb_0 spaces more generally).

(i) $psh(\text{det}(d)) = \eta(d)$ for any $d \in D$.

(ii) $psh(\text{samp}(s)(f)) = psh(s) \triangleright v \mapsto psh(f(v))$ for any $s : S(D)$ and $f : D \Rightarrow S(E)$.

In the case of bind, it is necessary that the split operation produces an independent stream of bits.

Denotation function is well-defined The structure of the argument showing that the expression denotation function is well-defined is similar to the argument for showing that the CPO semantics of PCF is well-defined. The interesting cases correspond to return M and $x \leftarrow M_1 ; M_2$ where we need to relate the sampling component with the valuation it denotes. We have this from Proposition [1.31].

5.3 Reasoning About Programs

We now return to resolving some semantic issues that were raised when we used the library to implement distributions. Throughout this section, we overload $\mathcal{E}[\Gamma \vdash M : \text{Dist } \tau]$ to mean $\pi_2 \circ \mathcal{E}[\Gamma \vdash M : \text{Dist } \tau]$ so that it just provides the distributional view. The meta-variable ρ ranges over environments.

Reasoning about distributions We first show that the encoding of the standard geometric distribution is correct. Let μ_B be an unbiased Bernoulli
distribution and μ^n correspond to n un-foldings of the expression stdGeometric.

\[
E[\text{stdGeometric}] \rho(U) = \sup_{n \in \mathbb{N}} \int \left(v \mapsto \begin{cases} 1 & v = t \\ f \mapsto 1 & v = f \end{cases} \right) \mu^B d\mu
\]

\[
= \sup_{n \in \mathbb{N}} \left(\frac{1}{2} + \sum_{w=0}^{\infty} 1_U(w+1)\mu^n(\{w\}) \right)
\]

By induction on n, we can show that μ^n is the measure

\[
\mu^n = \{0\} \mapsto 0, \{1\} \mapsto (1/2), \ldots, \{n\} \mapsto (1/2)^n.
\]

Hence, we can conclude that $\sup_{n \in \mathbb{N}} \mu^n$ is a geometric distribution and that the encoding of stdGeometric is correct (for any environment ρ).

Primitive functions In our encoding of the standard normal distribution via the Marsaglia polar transformation, we used $<$ as if it had a return type of Bool even though equality on reals is not computable. Indeed, the well-formedness conditions imposed on the global environment would disallow $<$ at the current type. To resolve the semantics of $<$, we can think in terms of an implementation. In particular, we can encode $<$ as dovetailing computations that semi-decide $<$ and semi-decide $>$. On the case of equality, which occurs with probability 0 in the Marsaglia polar transform, the function diverges.

Partiality and divergence We investigate the semantics of divergence more closely now. For convenience, we repeat the two expressions from Section 3 that provided two differing notions of divergence below.

\[
\text{botSamp} :: (\text{CMetrizable a}) \Rightarrow \text{Samp} (\text{Approx a})
\]

\[
\text{botSamp} = \text{botSamp}
\]

\[
\text{botSampBot} :: (\text{CMetrizable a}) \Rightarrow \text{Samp} (\text{Approx a})
\]

\[
\text{botSampBot} = \text{mkSamp} (_ \rightarrow \text{bot})
\]

where \text{bot} = \text{bot}

In the former, we obtain the bottom valuation, which assigns 0 mass to every open set. This corresponds to the sampling function $u \in 2^\omega \mapsto \perp$ and can be interpreted as failing to provide a sampler. In the latter, we obtain the valuation that assigns 0 mass to every open set, except for the set $\{\lfloor X \rfloor \cup \perp\}$ which is assigned mass 1. This corresponds to the sampling function $u \in 2^\omega \mapsto \lfloor \perp \rfloor$ and can be interpreted as providing a sampling function that fails to produce a sample.
As before, we can check that laziness works in the appropriate manner by selectively ignoring the results of draws from the distributions above.

\[
\text{alwaysDiv :: Samp Real}
\]
\[
\text{neverDiv :: Samp Real}
\]
\[
\text{alwaysDiv = do _ <- botSamp :: Samp Real stdUniform}
\]
\[
\text{neverDiv = do _ <- botSampBot :: Samp Real stdUniform}
\]

We can check that the denotation of the former is equivalent to that of `botSamp`.

\[
\mathcal{E}[\text{alwaysDiv}]\rho(U) = \int v \mapsto \mu_{U(0,1)}(U) \ d\mathcal{E}[\text{botSamp}]\rho = 0
\]

Note that \(\mathcal{E}[\text{botSamp}]\rho\) maps every open set to 0 so the integral is 0 as well. However, the denotation of the latter is equivalent to that of `stdUniform`.

\[
\mathcal{E}[\text{neverDiv}]\rho(U) = \int v \mapsto \mu_{U(0,1)}(U) \ d\mathcal{E}[\text{botSampBot}]\rho
\]
\[
= \sup_{s \text{ simple}} \{ \int s \ d\mathcal{E}[\text{botSampBot}]\rho \mid s \leq v \mapsto \mu_{U(0,1)}(U) \}
\]
\[
= \mu_{U(0,1)}(U)
\]

As a reminder, \(\mathcal{E}[\text{botSampBot}]\rho\) has \(V[\text{Real}] \mapsto 1\). Hence, the integral takes its largest value on the simple function\(^{21}\) \(\mu_{U(0,1)}(U) \ 1_{V[\text{Real}]}(\cdot) \leq v \mapsto \mu_{U(0,1)}(U)\) for any open \(U\).

As a final example, consider the program below that uses a coin flip to determine its diverging behavior.

\[
\text{maybeBot :: Samp Bool}
\]
\[
\text{maybeBot = do \ b <- stdBernoulli}
\]
\[
\text{if b then return bot else stdBernoulli}
\]

Intuitively, this distribution returns a sampler that always generates diverging samples with probability 1/2 and returns an unbiased Bernoulli distribution with probability 1/2. If we changed `return bot` to `botSamp` as below

\[
\text{maybeBot' :: Samp Bool}
\]
\[
\text{maybeBot' = do \ b <- stdBernoulli}
\]
\[
\text{if b then bot else stdBernoulli}
\]

\(^{21}\) A simple function is a linear combination of indicator functions on open sets.
then the semantics would change to a distribution that returns a *diverging sampler* with probability $1/2$ and an unbiased Bernoulli distribution with probability $1/2$.

Independence and commutativity In Section 3.2 we saw that we could not argue that two distributions that commuted the order in which we sampled independent normal distributions were equivalent. As a reminder, the issue was that commuting the order of sampling meant that the underlying random bit-stream was consumed in a different order. Consequently, the values produced by the two terms may be different. However, as the semantics we just saw relates the sampling view with the distributional view by construction, we can easily see that these two terms will be distributionally equivalent.

6 Bayesian Inference

What are the implications of taking a computable viewpoint for Bayesian inference? In this section, we discuss the implications of taking a computable viewpoint for Bayesian inference. Perhaps surprisingly, one can show that conditioning is not computable in general. Nevertheless, conditioning in practical settings does not run into these pathologies. It will be important for probabilistic programming languages to support conditioning in these cases. Note that these results say nothing about the efficiency of inference. In practice, we will still need approximate inference algorithms to compute conditional distributions.

6.1 Conditioning is not Computable

Figure 7 gives an encoding in λ_{CD} of an example by Ackerman et al. (2011) that shows that conditioning is not always computable. Similar to other results in computability theory, the example demonstrates that an algorithm computing the conditional distribution would also solve the Halting problem. The function tmHaltsWithinK accepts a natural n specifying the n-th Turing machine and a natural k describing the number of steps to run the machine for, and returns the number of steps the n-th Turing machine halts in or k if it cannot tell. Upon inspection, we see the function dk produces the binary expansion (as a dyadic rational) of a real, using tmHaltsWithinK to select different bits of the binary expansion of u or v, or the bit c. Thus,
An Application of Computable Distributions . . .

nonComp :: Samp (Nat, Real)
nonComp = do
 n <- geometric (1/2)
 c <- bernoulli (1/3)
 u <- uniform 0 1
 v <- uniform 0 1
 x <- return (mkApprox (\k -> select u v c k (tmHaltsWithinK n k)))
 return (n , x)
where
 select u v c k m
 | m > k = nthApprox v k
 | m == k = if c then 1 else 0
 | m < k = nthApprox u (k - m - 1)

Figure 7 A Haskell encoding of a counter-example given by Ackerman et al. (2011) that shows that conditioning is not always computable. The idea is that an algorithm that could compute this conditional distribution would also solve the Halting problem. The function tmHaltsWithinK in the code tests if the n-th Turing machine halts within k steps.

tmHaltsWithinK is computable because we can enumerate those Turing machines that halt within k steps.

Intuitively, computing the conditional distribution of a distribution encoded as a program corresponds to running it backwards. For example, computing the conditional distribution \(P(N | X) \), where the random variable N corresponds to the program variable \(n \) and \(X \) to \(x \), would require us to compute the complement of tmHaltsWithinK. Of course, we cannot enumerate the complement of the Halting set, so nonComp encodes a computable distribution whose conditional is not computable. We refer the reader to the full proof Ackerman et al. (2011) for more details.

6.2 Conditioning is Computable

Now, we add conditioning as a library to \(\lambda_{CD} \) (Figure 8). \(\lambda_{CD} \) provides only a restricted conditioning operation obsDens, which requires a conditional density. We will see that the computability of obsDens corresponds to an effective version of Bayes’ rule. We have given only one conditioning primitive here, but it is possible to identify other situations where conditioning is computable and add those to the conditioning library. For example, conditioning on positive probability events is computable (see Galatolo et al., 2010, Prop. 3.1.2).

The library provides the conditioning operation obsDens, which enables
module CondLib (BndDens, obsDens) where
import ApproxLib
import CompDistLib
import RealLib

newtype BndDens a b =
 BndDens { getBndDens :: (Approx a -> Approx b ->
 Real, Rat) }

-- Requires bounded and computable density
obsDens :: forall u v y.
 (CMetrizable u, CMetrizable v, CMetrizable y) =>
 Samp (Approx (u, v)) -> BndDens u y -> Approx y ->
 Samp (Approx (u, v))

-- Extend with more conditioning operators below ...

Figure 8 An interface for conditioning (module CondLib). The function obsDens enables
us to condition on continuous-valued data when a bounded and computable conditional density is available.

Proposition 1.32. (Ackerman et al., 2011, Cor. 8.8) Let U, V and Y be
computable random variables, where Y is independent of V given U. Let
$p_{Y|U}(y | u)$ be a conditional density of Y given U that is bounded and com-
putable. Then the conditional distribution $P((U, V) | Y)$ is computable.

The bounded and computable conditional density enables the following
integral to be computed, which is in essence Bayes’ rule. A version of the
conditional distribution $P((U, V) | Y)$ is

$$
k_{(U,V)|Y}(y,B) = \frac{\int_B p_{Y|U}(y | u) dP(U,V)}{\int p_{Y|U}(y | u) dP(U,V)}
$$

where B is a Borel set in the space associated with $U \times V$.

Another interpretation of the restricted situation is that our observations
have been corrupted by independent smooth noise (Ackerman et al., 2011,
Cor. 8.9). To see this, let U be the random variable corresponding to our
ideal model of how the data was generated, V be the random variable corre-

22 As a reminder, $p_{Y|(U,V)}(y | u, v) = p_{Y|U}(y | u)$ due to the conditional independence of Y and V given U. Hence, the conditional density $p_{Y|U}(y | u)$ in the integral written more precisely is $(u, v) \mapsto p_{Y|U}(y | u)$.

sponding to the corrupted data we observe. Notice that the model \((U, V)\) is not required to have a density and can be an arbitrary computable distribution. Indeed, probabilistic programming systems proposed by the machine learning community impose a similar restriction (e.g., see [Goodman et al. 2008]; [Wood et al. 2014]).

Now, we describe \(\text{obsDens}\), starting with its type signature. Let the type \(\text{BndDens} \tau \sigma\) represent a bounded computable density:

\[
\text{newtype BndDens a b = BndDens \{ getBndDens :: (Approx a -> Approx b -> Real, Rat) \}}
\]

Conditioning thus takes a samplable distribution, a bounded computable density describing how observations have been corrupted, and returns a samplable distribution representing the conditional. In the context of Bayesian inference, it does not make sense to condition distributions such as \(\text{maybeBot}\) that diverge with positive probability. Hence, we do not give semantics to conditioning on those distributions.

The implementation of \(\text{obsDens}\) is in essence a \(\lambda_{CD}\) program that implements the proof that conditioning is computable in this restricted setting. This is possible because results in computability theory have computable realizers.

\[
\text{obsDens :: forall u v y. (CMetrizable u, CMetrizable v, CMetrizable y) => Samp (Approx (u, v)) -> BndDens u y -> Approx y -> Samp (Approx (u, v))}
\]

\[
\text{obsDens dist (BndDens (dens, bnd)) d = }
\]

\[
\text{let f :: Approx (u, v) -> Real = \x -> dens (approxFst x) d}
\]

\[
\text{mu :: Prob (u, v) = sampToComp dist}
\]

\[
\text{nu :: Prob (u, v) = \bs ->}
\]

\[
\text{let num = integrateBndDom mu f bnd bs}
\]

\[
\text{denom = integrateBnd mu f bnd}
\]

\[
\text{in map fst (cauchyToLU (num / denom))}
\]

\[
\text{in compToSamp nu}
\]

The parameter \(\text{dist}\) corresponds to the joint distribution of the model (both model parameters and likelihood), \(\text{dens}\) corresponds to a bounded conditional density describing how observation of data has been corrupted by independent noise, and \(d\) is the observed data. Next, we informally describe the undefined functions in the sketch. The function \(\text{approxFst}\) projects out the first component of a product of approximations. The functions \(\text{sampToComp}\) and \(\text{compToSamp}\) witness the computable isomorphism between

23 That is, we implement the Type-2 machine code as a Haskell program.
The functions \texttt{integrateBndDom} and \texttt{integrateBnd} compute an integral (see (Hoyrup and Rojas, 2009, Prop. 4.3.1)), and correspond to an effective Lebesgue integral. \texttt{cauchyToLU} converts a Cauchy description of a computable real into an enumeration of lower and upper bounds.

Because \texttt{obsDens} works with conditional densities, we do not need to worry about the Borel paradox. The Borel paradox shows that we can obtain different conditional distributions when conditioning on probability zero events (e.g., see Rao and Swift (2006)). To illustrate this, suppose that X and Y are two independent random variables with standard normal distributions. We can ask a (classic) question: “What is the conditional distribution of Y given that $X = Y$?”

In statistics, the appropriate response is to notice that the question as posed is ill-formed—one cannot condition on a measure zero event. The well-posed formulation is to define an auxiliary random variable Z and condition on a constant. For instance, $Z = X - Y$ conditioned on $Z = 0$, $Z = Y/X$ conditioned on $Z = 1$, and $Z = \mathbb{I}_{Y=X}$ conditioned on $Z = 1$. Remarkably, all three versions lead to different answers (Proschan and Presnell, 1998).

A probabilistic programming language that does not provide a notion of random variable such as λ_{CD} will need an alternative method of addressing this issue. Type-2 computability provides a straightforward answer—it is not possible to create a boolean value that distinguishes two probability zero events in λ_{CD}. For instance, the operator \texttt{==} implementing equality on reals returns false if two reals are provably not-equal and diverges otherwise because equality is not decidable.

7 Summary and Further Directions

We hope to have shown that we do not need to sacrifice traditional notions of computation when modeling reals and continuous distributions by keeping their representations in mind. The simple observation is that we can “program” them in a general-purpose programming language. With this in mind, we can now ask a basic question: “What does it mean for a probabilistic programming language to be Turing-complete?” From the perspective of Type-2 computability, one answer is that such a language can express all (Type-2) computable distributions, analogous to how a Turing-complete language can

\footnote{The computable isomorphism relies on the distributions being full-measure. The algorithm is undefined otherwise.}
express all computable functions. Indeed, this resolution is somewhat tautological!

This answer raises another interesting question related to full-abstraction and universality of probabilistic programs. In the standard setting of PCF, one approach to the full-abstraction problem is to add parallel or par to the language so that the operational behavior coincides with the denotational semantics. Additionally adding a searching operator exists means that all computable functions will be definable. One may wonder, if an analogous result holds for probabilistic programs. In particular, a universality result would crystallize the thought that Turing-complete probabilistic programming languages express (Type-2) computable distributions. As we are now back on familiar grounds with regards to computability, we can turn our attention to the design of probabilistic programming languages.

The design of such languages will demand more from a semantics of probabilistic programs. For example, for the purposes of automating Bayesian inference, it is crucial that the inference procedure be efficient (and not simply computable). One direction is to find compilation strategies that can efficiently realize Type-2 computable distributions or approximate them (for some notion of approximation) using floating point numbers. Another direction is to consider alternative language designs (in addition to PCF with a probability monad) and the corresponding structures that we will need to model these languages.
Bibliography

Bauer, Andrej. 2005. Realizability as the connection between computable and constructive mathematics.

Huang, Morrisett and Spitters

