Structure of eEF3 and the mechanism of transfer RNA release from the E-site

Publication: Research - peer-reviewJournal article

  • Christian Brix Folsted Andersen
  • T. Becker
    T. BeckerCharite, BerlinGermany
  • M. Blau
    M. BlauCharite, BerlinGermany
  • M. Anand
    M. AnandUMDNJUnited States
  • M. Halic
    M. HalicCharite, BerlinGermany
  • B. Balar
    B. BalarUMDNJUnited States
  • T. Mielke
    T. MielkeUltraStructureNetwork, BerlinGermany
  • Thomas Boesen
  • Jan Skov Pedersen
  • C.M.T. Spahn
    C.M.T. SpahnCharite, BerlinGermany
  • T.G. Kinzy
    T.G. KinzyUMDNJUnited States
  • Gregers Rom Andersen
  • R. Beckmann
    R. BeckmannCharite, BerlinGermany
  • Interdisciplinary Nanoscience Center
  • Department of Chemistry
  • Department of Molecular Biology
Elongation factor eEF3 is an ATPase, which, in addition to the two canonical factors eEF1A and eEF2, serves an essential function in the translation cycle of fungi. eEF3 is required for the binding of the aatRNA-eEF1A-GTP ternary complex to the ribosomal A-site and has been suggested to facilitate the clearance of deacyl-tRNA from the E-site. Here, we present the crystal structure of eEF3 showing that it consists of an N-terminal HEAT repeat domain, followed by a four-helix bundle and two ABC-type ATPase domains with a chromo-domain inserted in ABC2. Moreover, we present the cryo-EM structure of the ATP-bound form of eEF3 in complex with the post-translocational state 80S ribosome from yeast. eEF3 uses an entirely new factor binding site near the ribosomal E-site, with the chromodomain stabilizing the ribosomal L1 stalk in an open conformation, thus, allowing tRNA release.
Original languageEnglish
JournalNature
Journal publication year2006
Volume443
Pages663-668
Number of pages6
ISSN0028-0836
StatePublished

Keywords

  • translation, ABC proteins

See relations at Aarhus University Citationformats

ID: 3291597

Aarhus University
Nordre Ringgade 1
DK-8000 Aarhus C

Email: au@au.dk
Tel: +45 8715 0000
Fax: +45 8715 0201

CVR no: 31119103

AU on social media
Facebook
LinkedIn
Twitter
YouTube