Perceptual processing of a complex musical context: Testing a more realistic mismatch negativity (MMN) paradigm

Research output: ResearchPoster

The mismatch negativity (MMN) is a brain response elicited by deviants in a series of repetitive sounds. It reflects the perception of change in low-level sound features and reliably measures auditory memory and predictive processes. MMN is a valuable tool for the study of music perception. However, most designs use simple tone patterns as stimuli, failing to represent the complexity of everyday music. We aim to develop a new MMN paradigm using more real-sounding stimuli. We want to determine how the complexity of the context affects auditory predictions as reflected by the MMN. For this purpose, we will modify a previous design based on the Alberti bass by adding a melody on top of it. We will use magnetoencephalography (MEG) to record nonmusicians’ responses to four types of deviants (mistuning, intensity, timbre and slide), while they watch a silent film under four conditions: listening to bass only (‘bass’), listening to melody only (‘melody’), listening to bass in the pitch range of the melody (‘bass high’), and listening to bass and melody together (‘together’). We expect MMNs for all deviants in all conditions. Moreover, since pitch complexity is higher in the melody than the bass, we expect a reduced MMN to pitch-related deviants (mistuning, slide) in the ‘melody’ compared to the ‘bass high’ condition. Finally, we expect a reduction of all MMNs in the ‘together’ condition, due to competition between sound streams. This paradigm could be used to address fine-grained questions about music perception and learning in more realistic sound contexts.
Original languageEnglish
Publication year9 May 2017
StatePublished - 9 May 2017
EventMEG NORD 2017 - Aarhus, Denmark
Duration: 9 May 201710 May 2017

Conference

ConferenceMEG NORD 2017
CountryDenmark
CityAarhus
Period09/05/201710/05/2017

See relations at Aarhus University Citationformats

ID: 112753539