Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Joana Cabral
  • Morten L Kringelbach
  • Gustavo Deco, Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, 08018 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.

Over the last decade, we have observed a revolution in brain structural and functional Connectomics. On one hand, we have an ever-more detailed characterization of the brain's white matter structural connectome. On the other, we have a repertoire of consistent functional networks that form and dissipate over time during rest. Despite the evident spatial similarities between structural and functional connectivity, understanding how different time-evolving functional networks spontaneously emerge from a single structural network requires analyzing the problem from the perspective of complex network dynamics and dynamical system's theory. In that direction, bottom-up computational models are useful tools to test theoretical scenarios and depict the mechanisms at the genesis of resting-state activity. Here, we provide an overview of the different mechanistic scenarios proposed over the last decade via computational models. Importantly, we highlight the need of incorporating additional model constraints considering the properties observed at finer temporal scales with MEG and the dynamical properties of FC in order to refresh the list of candidate scenarios.

Original languageEnglish
JournalNeuroImage
Volume160
Pages (from-to)84-96
ISSN1053-8119
DOIs
Publication statusPublished - Oct 2017

    Research areas

  • Journal Article, Review

See relations at Aarhus University Citationformats

ID: 112848261