The dynamics of human cognition: Increasing global integration coupled with decreasing segregation found using iEEG

Research output: Contribution to journal/Conference contribution in journal/Contribution to newspaperJournal articleResearchpeer-review

  • Josephine Cruzat, Universitat Pompeu Fabra, Barcelona
  • ,
  • Gustavo Deco, Universitat Pompeu Fabra, Barcelona, Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, 08018 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain., Max Planck Institute for Human Cognitive and Brain Sciences, Monash University
  • ,
  • Adrià Tauste-Campo, Universitat Pompeu Fabra, Barcelona
  • ,
  • Alessandro Principe, Universitat Pompeu Fabra, Barcelona
  • ,
  • Albert Costa, Universitat Pompeu Fabra, Barcelona, Theoretical and Computational Neuroscience Group, Center of Brain and Cognition, Universitat Pompeu Fabra, 08018 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
  • ,
  • Morten L. Kringelbach
  • Rodrigo Rocamora, Universitat Pompeu Fabra, Barcelona

Cognitive processing requires the ability to flexibly integrate and process information across large brain networks. How do brain networks dynamically reorganize to allow broad communication between many different brain regions in order to integrate information? We record neural activity from 12 epileptic patients using intracranial EEG while performing three cognitive tasks. We assess how the functional connectivity between different brain areas changes to facilitate communication across them. At the topological level, this facilitation is characterized by measures of integration and segregation. Across all patients, we found significant increases in integration and decreases in segregation during cognitive processing, especially in the gamma band (50–90 Hz). We also found higher levels of global synchronization and functional connectivity during task execution, again particularly in the gamma band. More importantly, functional connectivity modulations were not caused by changes in the level of the underlying oscillations. Instead, these modulations were caused by a rearrangement of the mutual synchronization between the different nodes as proposed by the “Communication Through Coherence” Theory.

Original languageEnglish
JournalNeuroImage
Volume172
Pages (from-to)492-505
Number of pages14
ISSN1053-8119
DOIs
Publication statusPublished - 15 May 2018

    Research areas

  • Cognition, CTC theory, iEEG, Integration, Segregation

See relations at Aarhus University Citationformats

ID: 129872015