Research output: Working paper › Research

- 1711.11522v1
456 KB, PDF-document

- Jørgen Ellegaard Andersen
- Alessandro Malusà

We formulate the AJ-conjecture for the Teichm\"{u}ller TQFT and we prove it in the case of the figure-eight knot complement and the $5_2$-knot complement. This states that the level-$N$ Andersen-Kashaev invariant, $J^{(\mathrm{b},N)}_{M,K}$, is annihilated by the non-homogeneous $\widehat{A}$-polynomial, evaluated at appropriate $q$-commutative operators. These are obtained via geometric quantisation on the moduli space of flat $\operatorname{SL}(2,\mathbb{C})$-connections on a genus-$1$ surface. The construction depends on a parameter $\sigma$ in the Teichm\"{u}ller space in a way measured by the Hitchin-Witten connection, and results in Hitchin-Witten covariantly constant quantum operators for the holonomy functions $m$ and $\ell$ along the meridian and longitude. Their action on $J^{(\mathrm{b},N)}_{M,K}$ is then defined via a trivialisation of the Hitchin-Witten connection and the Weil-Gel'Fand-Zak transform.

Original language | English |
---|---|

Publisher | ArXiv |

Publication status | Published - 2017 |

40 pages, 2 figures

See relations at Aarhus University Citationformats

No data available

ID: 121059723