High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics

Publikation: Bidrag til tidsskrift/Konferencebidrag i tidsskrift /Bidrag til avisTidsskriftartikel

    Irene Pinilla-Herrero, Elisa Borfecchia,
  • Julian Holzinger
  • Uffe V. Mentzel, Finn Joensen, Kirill A. Lomachenko, Silvia Bordiga, Carlo Lamberti, Gloria Berlier, Unni Olsbye, Stian Svelle,
  • Jørgen Skibsted
  • Pablo Beato
Abstract Two series of Zn-ZSM-5 catalysts were prepared by ion exchanging two commercial zeolites with different Si/Al ratios (40 and 15) with increasing Zn loadings. The nature of the Zn sites in the zeolite was studied by spectroscopy using laboratory and synchrotron techniques. All the evidences suggest that catalytic activity is associated with [Zn(H2O)n(OH)]+ species located in the exchange positions of the materials with little or no contribution of ZnO or metallic Zn. The effect of Zn/Al ratio on their catalytic performance in methanol conversion to aromatics has been investigated. In all cases, higher Zn content causes an increase in the yield of aromatics while keeping the production of alkanes low. For similar Zn contents, high densities of Al sites favour the hydrogen transfer reactions and alkane formation whereas in samples with low Al contents, and thus higher Zn/Al ratio, the dehydrogenation reactions in which molecular hydrogen is released are favoured.
TidsskriftJournal of Catalysis
Sider (fra-til)146-163
Antal sider18
StatusUdgivet - jun. 2018

Se relationer på Aarhus Universitet Citationsformater

ID: 126511407